

台灣產品技術指南

錨栓緊固技術手冊

ASK HILTI 線上設計者論壇

喜利得技術服務

我們不只是供應商,我們想讓你的設計過程更輕鬆。因此,我們提供各式各樣的技術支援服務,協助建築師和工程師在評估後選擇喜利得產品。經驗豐富的喜利得工程師和技術專家會與你的團隊合作,協助你開發獨家的結構或非結構應用。我們在建議、選擇或使用喜利得產品的專業設計和建築領域裡,致力於建立與維持客戶對我們的信任。

現場工程和防火專家

- 產品應用設計和細節協助
- 規格諮詢
- 舉辦教育研討會
- 安裝與安全訓練
- 工地特定產品支援

LEED 文件

• LEED 文件線上下載

工程設計合作

- 技術報告與核准
- 線上技術設計中心
- 技術軟體程式, 例如PROFIS Engineering
- 產品應用諮詢
- 防火工法評估
- 特定專案的 CAD 支援
- 舉辦教育網路研討會
- Ask Hilti 論壇

台灣專屬服務

- 混凝土錨栓/植筋和火藥擊釘緊固件拉拔測試
- 混凝土錨栓/植筋安裝教育訓練
- 被動式防火安裝教育訓練

ASK HILTI 論壇

擴充你的技術知識

我們的線上社群可提供繼續教育學分,並由頂尖工程專家給予專業建議。無論是對喜利得產品有技術問題,或單純想要增進各類設計與建築主題的技術知識,Ask Hilti 論壇都是你的線上首選目的地。

問題

對喜利得緊固件或防火產品有技術問題嗎?在 Ask Hilti, 可向我們的任一技術支援工程師尋求專家建議, 或吸取設計專業同儕的見解。只要將問題張貼在 Ask Hilti 討論板即可。

學習

需要專業訓練積分嗎?喜利得全年都提供豐富多樣的現場網路講座,且 Ask Hilti 也有全天候的 隨選網絡講座可觀看。

文章

深入鑽研法規範本、新測試標準、設計方法、產品創新等多種主題相關的設計主題。搜尋我們的技術文章資料庫,擴大你的知識並做好充分準備,將喜利得的創新產品和技術應用於日後的設計專案。

立即前往 https://ask.hilti.com.tw 擴大你的技術知識。

目錄

錨栓	選擇指引8
1.0	前言12
2.0	錨栓緊固技術13
3.0	錨栓系統17
4.0	参考資料136

ASK HILTI 論壇

擴充你的技術知識

我們的教育課程可協助建築師和工程師學習技術解決方案,讓自己做好充分準備,在日後的建築專案中將我們的創新產品和技術投入實作。

你可以坐在辦公室或自家, 舒舒服服地觀看技術研討會。喜利得網路講座透過簡報方式提供互動式線上學習體驗, 包括即時產品展示、技術研討會等多種形式。

無論是隨選或即時網路講座, 我們的所有教育課程都可透過線上設計者論壇 Ask Hilti 參加。

立即前往 https://ask.hilti.com.tw 擴大你的技術知識。

目錄

1.0 前言 1.1 1.2 1.3 1.4 1.5	關於公開荷載值	12 12 12 12 12
2.0 緊固抗	支術	
2.1 基材 2.1.1 2.1.2 2.1.3 2.1.4 2.2 測試資	緊固基材	13 13 13 14 15
3.0 錨栓乳	· · · · · · · · · · · · · · · · · · ·	
	原理和設計 釋義 用於混凝土和磚石的錨栓	17 17 18
3.1.3 3.1.4 3.1.5	錨栓作業原理 錨栓在荷載下的行為 錨栓設計	18 19 19
3.1.6 3.1.7 3.1.8 3.1.9 3.1.10 3.1.11 3.1.12	ACI 318/ 土木 401 第 17 章強度設計— SD (LRFD) CSA 23.3 附件 D 限制狀態設計 喜利得簡化強度設計表 容許應力設計 (ASD) 錨栓扭矩和預緊力 錨栓的抗疲勞設計 錨栓的防火設計	19 21 21 25 27 28 28
	型錨栓系統	29
	化學型錨栓系統總覽 HY-200 R V3 化學型錨栓系統 HIT-RE 500 V3 環氧樹脂化學型錨栓系統 HIT-RE 100 化學型錨栓系統 HVU2 膠囊式化學型錨栓系統 HVU2 膠囊式化學型錨栓系統	29 33 56 72 81
	型錨栓系統	92
	HDA 自切底錨栓 HSL4 重型膨脹錨栓 HSL3-R 重型不銹鋼膨脹錨栓 HST-3 膨脹錨栓 HUS4 自攻錨栓	92 97 102 106 118

4.0 參考

4.1 參考標	票準	136
4.1.1	材料標準	. 136
4.1.2	ASTM 電鍍標準	. 136
4.2 技術	参考資料	137
4.2.1	公制轉換和等值單位	. 137
4.2.2	材料的機械性質	. 138
4.2.3	螺栓螺紋資料	. 139
4.2.4	混凝土用鋼筋資料	. 140
銷售條款	與細則	141

錨栓選擇指引

			基材	* , 1, 2			安裝*						
		30		LW		t cure							
	章節編號	非開裂混凝土	開裂混凝土3	輕質混凝土	混凝土砌塊	在攝氏20度下,大約的 工作 / 固化 時間	適用於 SafeSet 安裝 系統	鑽石洗孔⁴	水飽和混凝土	含水孔淌	浸泡 (水下)	倒吊	
HIT-HY 200 R V3 化學藥劑	3.2.2					15/90 最少		-					
HIT-RE 500 V3 環氧樹酯	3.2.3					40 分鐘/ 6.5 小時	與 HDB 或 TE-YRT 相容						
HIT-RE 100 環氧樹酯	3.2.4					30 分鐘/ 12 小時							
HVU2 膠囊	3.2.5					5 分鐘	■ 僅與 HDB 相容					5	

- 適用。可針對這項應用提供技術資料。請參考本技術指引中的相關章節。
- □ 可能適用。錨栓系統在此應用方式中可運作正常。不過,無法提供實證資料。
- * 表示單獨適用於文件載明的條件。如果同時有多個條件適用,請參閱本技術指引中的產品詳細資訊,或聯絡喜利得技術服務。
- 1 基材的差異可能很大,因此可能需要採取工地特定的錨栓測試。
- 2 除非另有說明,否則應以正常重量的混凝土進行測試。輕質混凝土可能適用。請參閱本技術指引中的產品特定詳細資訊,或查詢相關建築法規 (ACI 318/土木 401、IBC 等)。
- 3 請參閱章節 2.1.2 了解開裂混凝土的定義。
- 4 如經備註,則鑽石鑽孔適用,不過可能受限於特定基材、安裝條件和應用方式、特定喜利得工具,或須降低荷載。請參閱本技術指引中的特定產品詳細資訊。
- 5 M32直徑螺桿除外。

錨栓選擇指引

		詗心	證				特色*			Ī		텥		防腐蝕		尺寸²	(mm)
	ICC-ES/IAPMO UES	ACI 355.4	COLA / LABC 附錄	NSF 61	抗震	穿透式 固定	高周疲勞 ¹	震動 / 衝擊荷載1	耐高溫	螺桿	內牙螺桿	多岡 筋	電鍍鋅 / 機械鍍鋅	熱浸鍍鋅	不銹鋼	最小尺寸(直徑)	最大尺寸 (直徑)
HIT-HY 200 R V3 化學藥劑	AC308 AC58														304/ 316	10	24
T MILITE MILITE MILITE	AC308														304/ 316	10	24
HIT-RE 100 環氧樹酯	AC308														304/ 316	10	24
HVU2 膠囊	AC308														304/ 316	10	24

- 適用。可針對這項應用提供技術資料。請參考本技術指引中的相關章節。
- □ 可能適用。錨栓系統在此應用方式中可運作正常。不過,無法提供實證資料。
- * 表示單獨適用於文件載明的條件。如果同時有多個條件適用,請參閱本技術指引中的產品詳細資訊,或聯絡喜利得技術服務。
- 1 高周疲勞和震動/衝擊荷載參考資料僅依據歐洲測試和指引進行提供。
- 2 文件載明的直徑為具有公開荷載資料的直徑。部分化學型錨栓系統可能使用較大的直徑元件。請聯絡喜利得了解詳細資訊。

 $_{
m 9}$

錨栓選擇指引

			基材1,2							特	 色	
			Sign		LW							
		章節編號	非開裂混凝土	開製混凝土3	輕質混凝土	鋼承鈑上的 混凝土	空心混凝土	混凝土砌塊	お職	穿透式固定	高周疲勞4	震動/衝擊荷載4
HDA 自切底錨栓		3.3.1										
HSL4 重型膨脹錨栓		3.3.2										
HSL-3-R 重型膨脹錨栓		3.3.3							*			
HST3 楔形錨栓		3.3.4										
HUS4 混凝土自攻錨栓	∏m <i>oooooo</i>	3.3.5										

- 適用。可針對這項應用提供技術資料。請參考本技術指引中的相關章節。 □ 可能適用。錨栓系統在此應用方式中可運作正常,不過,無法提供實證資料。 * 無鑽石空心鑽孔

- 1 基材的差異可能很大,因此可能需要採取工地特定的錨栓測試。 2 除非另有說明,否則應以正常重量的混凝土進行測試。輕量混凝土可能適用。請參閱本技術指引中的特定產品詳細資訊,或查詢相關建築法規 (ACI 318/ 土木 401、IBC 等)。
- 3 請參閱章節 2.1.2 了解開裂混凝土的定義。
- 4 高周疲勞和震動/衝擊荷載參考資料僅依據歐洲測試和指引進行提供。

錨栓選擇指引

-		認證			錨栓頭類型			防腐蝕				尺寸1				
	ICC-ES/IAPMO UES	ACI 355.2	FM	UL	COLA/LABC Supplement	佛羅里達州建築法規高速 颶風區	螺柱(外牙)	內螺紋	六角螺栓	沈頭/扁頭	電/機械鍍鋅	熱浸鍍錊	鍍鋅夲碳鎁	不銹鋼	最小尺寸 (直徑)	最大尺寸 (直徑)
HDA 自切底錨栓	AC193													316	M10	M20
HSL4 重型膨脹錨栓	AC193													316	M8	M20
HSL-3-R 重型膨脹錨栓	AC193														M8	M24
HST3 楔形錨栓	AC193													316	M8	M24
HUS4 混凝土自攻錨栓	ETA													316	M8	M16

- 適用。可針對這項應用提供技術資料。請參考本技術指引中的相關章節。
 □ 可能適用。錨栓系統在此應用方式中可運作正常,不過,無法提供實證資料。
 * 無鑽石空心鑽孔
- 1 文件載明的直徑為具有公開荷載資料的直徑。

1.0 前言

1.1 關於公開荷載值

錨栓緊固技術指引的目的是為設計師或指定者補充喜利得產品和服務目錄的技術資訊。文件中所示技術資料為發行當日 (請見封底) 止的最新資訊。荷載值的依據為喜利得或承包測試實驗室的測試和分析計算,所用的測試程序和建築材料代表了台灣的現行實踐。

混凝土等基材的種類和工地現場條件須經現場測試才可判斷在 特定工地的實際效果。資料也可能以國家標準或專業研究與分 析為依據。

請注意,核准機關 (例如 ICC-ES、COLA 等) 所發布的報告中提供的公開設計值可能與本發行版本內含數值不同。

如需相關更新和變更資訊, 請致電 **0800-221-036** 洽詢喜利得台灣股份有限公司。

1.2 認證

許多喜利得錨栓產品都有列名認證或取得核准,例如 International Code Council Evaluation Services Reports (ICC-ES ESR's) 或 Underwriters Laboratories (UL) 列名認證。 列名認證和核准是由獨立第三方根據建築法規範本或各種管轄 要求評估產品後所提供。產品獲得列名認證和核准,表示產品 已依據特定認可方式或測試標準經過測試和評估。

本文件所收錄的技術資料並非全部以公開核准或列名認證為依據。喜利得發布的其他資料可能不在報告的範圍內,例如現有 測試標準範圍以外的應用方式。

錨栓緊固技術指引中已標示核准和列名認證資料,以便參考。 產品列名認證或核准的接受與否,取決於授權單位對專案的管 轄權。請務必檢視核准或列名認證資料,判斷專案預期採行的 應用方式或條件是否包含在核准或列名認證的範圍。

1.3 單位

技術資料同時會以英制 和公制單位提供。文件中的公制數值係採用國際單位制 (SI),符合1988 年綜合貿易和競爭法所修訂的1975 年公制轉換法。HSL 和 HDA 錨栓等公制產品的資料是以SI 單位呈現,並另以括號提供英制工程單位 (英吋、磅等) 的轉換數值。以分數表示的產品所呈現的資料為英制工程單位,並另以括號提供 SI 公制轉換值。如需額外資訊,請參閱本產品技術指引的章節 4.2.1〈公制轉換與同等數值〉。

1.4 我們的宗旨

我們充滿激情地創造熱情的客戶,建立更美好的未來!

熱情的客戶

我們為客戶辨別需求並提供創新與加值的解決方案,進而為客戶創造成功

建立更美好的未來

對社會和環境抱持責任感。

1.5 我們的品質系統

喜利得是獲得 ISO 9001 和 ISO 14001 認證的精選台灣公司之一。這代表我們致力於鞏固品質的熱忱獲得認可,可向客戶保證喜利得制定的系統和程序能維護我們的全球市場領導者地位,且會持續評估與改善績效

這代表, 客戶完全能獲得滿足!

如需技術支援, 請致電 **0800-221-036** 洽詢喜利得台灣股份有限公司。

2.0 錨栓緊固技術

2.1 基材

2.1.1 緊固基材

目前使用的建材類型廣泛,因此錨栓的錨定條件也各異。市面上幾乎少有基材無法使用喜利得產品加以緊固。不過,在選擇適用的緊固件/錨栓並決定它可支撐的荷載時,基材的性質扮演著決定性的角色。設計師有責任謹慎根據基材搭配緊固件類型,以便取得預期結果。如需了解未載明的基材,請致電0800-221-036 洽詢喜利得台灣股份有限公司。

2.1.2 混凝土

混凝土是一種合成石材,混合了水泥、粒料和水。多數情況下,混凝土會使用特殊添加物來影響或改變特定性質。相比抗拉強度,混凝土的抗壓強度更高。因此,鋼筋常被澆鑄在混凝土中來承受張力,這種組合稱為鋼筋混凝土。

水泥是一種接著劑,結合了水和粒料,透過水合程序,硬化而 形成混凝土。波特蘭水泥是業界最常用的水泥,為了符合設計 需求 (ASTM C150),市場上有多種形式可供應。

用於混凝土中的粒料同時包含細粒料 (通常為砂土) 和粗粒料, 依粒子大小分級。不同的粒料類型可用於形成特定特徵的混凝土。正常重量的混凝土通常由碎石或礫石構成, 而輕質混凝土則以膨脹黏土、頁岩、石板岩或鼓風爐渣組成。輕質混凝土的使用時機為想要降低結構的靜荷載或讓地板結構達到極高防火等級時。

如果隔熱性質是首要考量,則輕質粒料會以珍珠岩、蛭石、鼓風爐渣、黏土或頁岩製成。最後,砂質輕質混凝土會以輕質粒料和天然砂土結合而成。整體而言,所有混凝土只要單位重量介於 85 到 115 pcf,就可視為結構性輕質混凝土。混凝土類型和重量相關的 ASTM 規格可摘要如下:

ASTM								
混凝土類型	骨料級配規格	混凝土單位重量 pcf						
正常重量	ASTM C33	145-155						
輕質粒料	ASTM C330	105-115						
全輕質粒料	ASTM C 330	85-110						
輕質隔熱混凝土	ASTM C 332	15-90						

混凝土粒料的類型和力學特性,對用於鑽錨栓孔的鑽頭的行為 有顯著影響。事實上,粒料越硬,會使鑽頭的磨損更大,從而 降低鑽孔效能。

混凝土粒料的硬度也會影響動力驅動式緊固件和錨栓的荷載能力。驅動緊固件和螺栓通常可以穿透「軟性」粒料 (頁岩或石灰石),但混凝土表面附近的硬性粒料 (例如花崗岩) 可能會對緊固件或螺栓的穿透效果有負面影響,並降低荷載能力。粒料的力學特性對錨栓效能的影響,並沒有太充分的相關知識。一般來說,較硬/密度較高的粒料 (如花崗岩) 通常會產生較高的混凝土錐狀破壞荷載,而輕質粒料則會產生較低的拉力和剪力能力。

混凝土通常被認為會在正常服務荷載條件下破裂,更精確而言,是指荷載所施加的拉應力或約束條件超出了抗拉強度的情況。破裂的寬度和分布情況通常可透過鋼筋來控制。若考量鋼筋提供的保護力,根據 ACI 318/ 土木 401,破裂寬度預期會小於約 0.012 in (0.3 mm)。在地震荷載下,鋼筋開始產生降伏應力時,混凝土彎曲裂口寬度預期會接近 1-1/2 x 靜態裂口寬度 = 0.02" (0.5 mm)。ACI 318/ 土木 401 和國際建築法規都保守地將開裂混凝土假設為預埋錨栓和後置錨栓設計的基準條件,因為與非開裂混凝土相比,錨栓附近存在裂縫會導致極限荷載能力降低,並增加在極限荷載下的位移。僅當能夠證明混凝土在錨栓的使用壽命週期內,在承受正常使用荷載時不會出現開裂,示範建築規範方允許針對非開裂混凝土條件進行設計。對於需要考量地震行為的設計,後置錨栓必須證明適用於開裂混凝土和地震荷載。

混凝土緊固件的極限強度數值通常與混凝土的 28 天

單軸抗壓強度相關 (實際值,不指定)。可在 28 天內固化的混凝土可稱為綠混凝土。粒料類型、水泥替代物 (例如飛灰) 和添加物可能影響部分緊固件的效能,但標準單軸壓力測試所測得的混凝土強度可能不會反應這種影響。一般來說,喜利得的資料反應的測試是基於採用普通的粒料和水泥類型的普通非鋼筋混凝土。如遇疑慮,請洽詢喜利得技術服務。

若使用強度顯著較低的綠混凝土 (固化時間少於 28 天),除非工地已進行過測試,驗證過緊固能力,否則建議不要在固化未滿7 天的混凝土中安裝機械錨栓。如果在綠混凝土安裝錨栓,但在混凝尚未完全固化前都未施加荷載,則可根據施加荷載時的混凝土強度得出錨栓承載力。

ACI 318/ 土木 401 章節 17.1.2 和 CSA A23.3 章節D.1.2 要求,在混凝土中安裝化學型錨栓時,混凝土的固化時間不得少於 21 天。

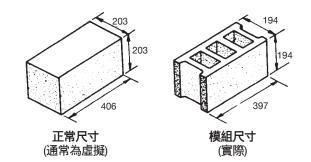
當向混凝土安裝化學型錨栓時,如果混凝土固化天數少於 21 天,則建議設計工程師根據錨栓安裝時混凝土的強度評估錨 栓的設計,並採用水飽和混凝土的黏結強度。建議採取現場測 試. 藉此驗證緊固承載力。

為錨栓鑽孔時,請避免切割混凝土的鋼筋。如不可避免,請先諮詢負責的設計工程師。

2.1.3 磚石材質

磚石是一種種類各異的建材,包括黏土磚、混凝土磚,或使用接縫砂漿黏結在一起的黏土瓷磚。磚石的主要應用方式為建造牆壁,建造時水平排列和/或垂直排列 (wythe) 的方式擺放磚石構件。磚石構件的製造可採用多種形狀、大小、材質,且可為空心和實心。這種多樣性要求務必謹慎挑選錨栓或緊固系統,以便符合磚石材質的應用方式和類型。磚石這種基材通常強度比混凝土低許多。磚石構件的性能及其空腔和腹板的幾何形狀,對緊固的終極承載力有相當大的影響。

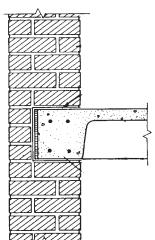
在有空腔的磚石上為錨栓鑽孔,務必小心避免表層內部的剝落。如果剝落,對於長度必須符合表層厚度的「套掛」型機械錨栓性能有相當大的影響。為了降低剝落的可能性,除非另有指定,否則鑽孔時必須將鎚鑽設為只有旋轉的模式 (亦即關閉鑽頭的鎚擊動作)。


混凝十砌塊

混凝土砌塊這個詞通常用來指稱以波特蘭水泥、水和礦石粒料 製成的混凝土磚石單元 (CMU)。CMU 砌塊的製使用了多種

單位標準寬度 mm	最小表層厚度 mm	最小腹板厚度 mm
76 and 102	19	19
152	25	19
203 及以上	32	19

摘自 ASTM C90 - 14 表 1。


1 依據測試方法 C140 進行測試時,對三個單位所測數值的平均值。

輕質、中質或正常重量的粒料。空心和實心的承重 CMU 製造時以 ASTM C90 為依據。

CMU 的尺寸通常參照單位標準寬(152mm、203mm、254mm 等)。實際尺寸為標準尺寸再減去接縫砂漿的厚度。

CMU 的建造可再經強化,強化時需將加固條以水平放置在灌漿的空間中,創造出可比擬鋼筋混凝土的複合砌塊。無論是否經過加固,如果所有空間都已灌漿,這種建造方式稱為完全灌漿。如果只在加固空間中灌漿,則稱為部分灌漿。可通過結合梁將鋼筋水平置於墻內,這種情況始終進行灌漿。也可將梯形鋼筋置於砌塊層之間的砂漿層中進行加固。灌漿時通常遵循ASTM C476,且最低抗壓強度為 2,000 psi。混凝土磚石單元的抗壓強度通常皆於 1,250 到 4,800 psi 以上,不過組裝後的磚石達到的最大指定抗壓強度通常不會超過 210 kgf/cm²。化學和機械錨栓都適用於灌漿的 CMU。如果存在空隙或可能有空隙,請勿使用機械錨栓,且化學錨栓的置入必須結合套管,藉此預防黏結材料產生不受控的流動。在空心磚中,錨栓強度通常以表層厚度為依據,而此厚度可能各不相同。

305mm 承重磚牆

黏十磚

黏土磚是全世界最廣泛使用的磚石單位類型。磚塊是稜柱狀的磚石單位,成分為適當混合的土壤、黏土和穩定劑(乳化瀝青)。磚塊的成形需經過模造、壓製或擠壓,並以高溫火燒,藉此達到ASTM C62 (實心磚)和 C652 (空心磚)要求的強度和耐用性。

視等級而定,黏土磚塊的抗壓強度可能介於 1,250 到 25,000 psi 以上。灌漿的多層磚石構造通常包含兩層,每層厚度為一個單位磚石,中間以 12.7mm 到 114.3mm 寬的空間 (領式接縫)分隔,並通常以灌漿填補。牆體之間用拉桿連接。

此空間也可能會以垂直鋼筋強化。實心磚砌體以鄰接磚層和露頭磚層互相交錯所構成。對於磚塊,一般建議使用化學錨栓。 在舊式的未強化構造 (URM) 中,或磚石條件不明的情況下,建 議使用套管來預防接合材料不受控地流入空隙。

砂漿

砂漿的用途是在磚石單位之間提供統一承重,並將個別單位接合成為一個複合集體,可承受外在施加的荷載條件。砂漿的成分混合了水泥性原料、粒料和水,根據 ASTM C270而按比例調和而成。水泥/石灰砂漿或磚石砂漿 (各有四種類型) 通常都是根據此標準而使用。

由於砂漿在確保磚石牆的結構完整性方面具有極大重要性,請 務必了解後置錨栓與結構的互動方式。磚石結構中有指定的接 合位置,設計錨固時務必考量後置錨栓或動力驅動式緊固件與 這些位置的距離。本技術指引中有提供產品的具體指導原則。

砂漿	類型	第 28 天的平均抗壓強度, 最小 psi (MPa)						
水泥石灰	М	2500	(17.2)					
	S	1800	(12.4)					
	N	750	(5.2)					
	0	350	(2.4)					
磚石水泥	M	2500	(17.2)					
	S	1800	(12.4)					
	N	750	(5.2)					
	0	350	(2.4)					

水泥砂漿

ACI 定義水泥漿是「水泥原料與水的混合,可能含或不含粒料,按照比例產生可灌注的一致濃度,構成成分不會分離。」水泥砂漿和砂漿這兩個詞彙經常會交替使用,但實際上兩者並不同。水泥砂漿並不必然包含粒料(砂漿含細粒料),並以可澆注的稠度進行供應(砂漿並非如此),且用於填補空隙(砂漿則用於黏結不同元素)。

總結而言,水泥砂漿係用於填補空間或空隙,並在建築元素之間 提供接續。在某些應用方式中,水泥砂漿會在結構性承載力方面 產生作用,例如未加固的磚石結構。

在後置錨栓安裝階段,水泥砂漿須由設計方指定。為了確定設計數值而測試後置錨栓時,須根據適用的 ASTM 標準指定灌漿。 建議設計工程師熟悉性能測試中使用的水泥砂漿特性,以便加強 了解本指引所發布的設計荷載具有的適用性。

2.1.4 添加物

化學添加物是指混合前或混和中添加到混凝土或砂漿基本成分 (水泥、水和粒料) 中的原料。化學添加物可用於強化混凝土和砂漿的塑性和硬化狀態。這些特性可經過修改,藉此提升抗壓和抗彎強度、降低可透性,並提高耐用度、防止腐蝕、減少收縮、加速或推遲初凝、提高坍度和可加工性、增強水泥效率、改善混合物經濟性等。

後置錨栓的測試是在不含添加物的混凝土中進行。設計師在考量使用後置錨栓時,應考慮添加物對混凝土產生的效應。

2.2 測試資料評估

2.2.1 制定緊固件性能資料

最先進的錨栓設計都會使用所謂的強度設計方法。透過強度設計方法,首先針對所有可能的錨栓破壞模式計算標準強度。接著,每個標準強度都會再套用強度修正參數,藉此取得設計強度。控制設計強度最後會再與因數化荷載相比。ACI 318/ 土木401 第 17 章的規定為強度設計的使用基礎。

喜利得機械錨栓使用在混凝土中的強度設計資料取自以 ACI 355.2 和 ICC-ES AC193 規定為依據的測試。喜利得化學型錨栓使用在混凝土中的強度設計資料取自以 ACI 355.4 和 ICC-ES AC308 規定為依據的測試。

自 IBC 2003 起,IBC 建築法規即針對在混凝土中進行預埋錨栓 和後置錨栓的錨固作業採取強度設計方法。

另有一種錨栓設計方法稱為「容許應力設計」,仍然可當作 強度設計規定的替代方法,尤其在用於錨固至磚石基材時更 常用。章節 2.2.2 詳細說明了喜利得所採用的容許應力設計規 定。

喜利得機械錨栓的容許應力設計資料取自以 ASTM E488、ICC-ES AC01 和 AC106 為依據的測試。喜利得化學型錨栓的容許應力設計資料取自以 ASTM E1512、ASTM E488、ICC-ES AC58 和 AC60 為依據的測試。

確定容許荷載的方法有兩種:

(1) 從指定數量的單獨測試中獲得極限荷載的平均值,並對平均極限荷載套用適當的安全係數,或 (2) 對測試數據採用統計方法,將容許工作荷載與緊固效能可變性聯繫起來。

2.2.2 容許荷載

就記錄而言,錨栓的容許荷載都是在將通用安全係數套用到測試結果所得的平均極限數值後所得出,如等式(2.2.1) 所示。

$$F_{\text{all}} = \frac{F}{V} \qquad (2.2.1)$$

其中:

F = 測試資料的平均極限數值 (母體樣本)

v = 通用安全係數

業界在實作中為後置錨栓採用 4 到 8 的通用安全係數,已有將近三十年。業界預設通用安全係數可涵蓋現場安裝狀況及實驗室測試錨栓性能的各種預期變化。

請注意,套用到平均值的通用安全係數並未明確說明變異係數,亦即所有錨栓在測試資料的變化性方面均視為相等。

2.2.3 資料的統計評估

從大量的錨栓測試經驗所見,極限荷載通常接近常態高斯機率密度函數,如圖 2.2.1 所示。因此,便可運用統計評估技巧將阻力與特定錨栓相關的系統性能可變性聯繫起來。

IBC 根據強度設計的錨栓測試結果,採用 5%的分位數特徵值當作測定公開設計荷載的基礎。95%的測試荷載超出 5%分位數值的可能性有 90%。5%分位數的計算方法是從基於試驗次數的平均值中減去一定數量的試驗結果的標準差。請見等式 (2.2.2)和 D. B. Owen 的參考統計數據表。

在一系列共 5 次的試驗中,5% 分位數值的計算方式為以 k = 3.401 乘以標準偏差,然後將其從平均值中減去。

Owen, D.B., (1962) Handbook of Statistical Tables, 第5.3. 節〈Reading〉: Addison-Wesley Publishing。

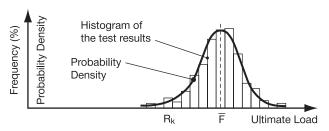


圖 2.2.1 錨栓極限荷載的頻率分布, 顯示 5% 分位數的重要性

$$R_{k} = \overline{F} - k \cdot s = \overline{F} (1 - k \cdot cv)$$
 (2.2.2)

其中:

R。 = 接受測試的錨栓系統呈現的特徵抗力

F = 接受測試的錨栓系統呈現的平均極限抗力

= 測試樣本尺寸 n 的分布值

s = 測試資料的標準偏差

cv = 變異係數 = <u>S</u>

因此,採用低標準偏差的系列測試將獲得更高的 5% 分位數特性設計數值。此為典型的韌性鋼材破壞模式。

特性強度設計荷載可轉換為容許荷載。請參閱第 3.1.6 節。

3.0 錨栓系統

3.1 錨栓原理和設計

3.1.1 釋義

化學型錨栓是一種後置錨栓,用於插入硬化混凝土、磚石或石材中的鑽孔。藉由錨栓和化學藥劑之間的黏合及化學藥劑和基材之間的黏合,荷載會轉移到基材。

錨栓類別是一種指定分級,對應的是與受拉錨栓相關的混凝土破壞模式的特定強度折減係數。錨栓類別的制定依據是錨栓在可靠性測試中的性能。

錨栓群組是指一組有效埋深和剛性近乎相等的錨栓,其最大錨栓間距小於臨界間距

錨栓加固是一種將錨栓的完整設計荷載轉移到結構構件的加固方式。

錨栓間距是指承受載荷之錨栓間從中線到中線的距離。

附掛件是從外部安裝到混凝土表面的結構性組件,可轉移荷載 到錨栓或接收錨栓的荷載。

預埋錨栓傳統上是灌入混凝土之前置入的擴頭螺栓、擴頭螺柱 或彎鉤螺栓。

此外,預埋的內牙螺桿也是一種預埋錨栓。

特性承載力是一個統計詞彙,代表有 90% 的機率可確信實際 強度超出標準強度的可能性達 95%。這個詞也可稱為 5% 分位 數承載力。

混凝土拉破是一種混凝土破壞模式,即由於錨栓的安裝或施加的荷載而導致測試構件出現椎狀或邊緣破壞。

混凝土劈裂破壞是一種混凝土破壞模式,其中混凝土沿著穿過一個或多個錨栓軸線的平面破裂。

開裂混凝土是錨栓所在的混凝土發生的狀況。請參閱第 2.1.2 節。

臨界間距是指為了達到完整承載力,受力錨栓之間所需的最小間距。

臨界邊距是指為了達到完整承載力所需的最小邊距。

固化時間是指混合黏結性材料成分後,對照設計的機械特性和 抗性,讓黏結性材料在鑽孔中達到硬化狀態所經過的時間。在 經過完整固化時間後,即可施加荷載。

位移控制膨脹錨栓是一種後置錨栓,安裝方式係透過套管中的 內部插銷移動或套管在膨脹元件 (插銷) 上的移動,而朝向鑽孔 側面膨脹。安裝完成後,就不會再進一步膨脹。 **韌性鋼元件**是為了管控鋼材的韌性降伏而設計的錨栓。這是通過對從成品錨具加工出來的試樣進行拉力測試來確定的。最低要求為 14% 的延伸率和 30% 的斷面收縮率。

膨脹錨栓是一種後置錨栓,用於插入硬化混凝土或磚石中的鑽孔。藉由承重、摩擦(或兩者兼具),與基材之間的荷載可互相轉換。

邊距是指從錨栓中線到錨栓置入所在基材空邊的距離。

有效埋深是指錨栓可與周圍混凝土來回轉換力度的整體深度。 有效埋深通常是在施加拉力後,混凝土破壞表面的深度。使用 預埋擴頭錨栓和擴頭螺柱時,有效埋深需從頭部承重接觸面開 始測量。使用膨脹錨栓時,基材表面到膨脹元件尖端的距離即 為有效埋深。

凝固時間是混合黏結性原料成分之後到開始出現明顯化學反應 (特徵為黏度增加) 所經過的時間。經過凝固時間後,絕不可擾動錨栓。

最小邊距是指為了盡可能降低基材在安裝錨栓期間發生劈裂的可能性,從錨栓中線到基材邊緣必需的間距。

最小間距是指為了盡可能降低基材在安裝錨栓期間發生劈裂的 可能性,相鄰的受力錨栓之間必需的中線距離。

最小構件厚度是指為了盡可能降低基材劈裂的可能性,嵌入錨 栓的構件所需的最小厚度。

後置錨栓是一種安裝到硬化混凝土和磚石中的錨栓。膨脹、自 切底和化學型錨栓都是後置錨栓。

投影面積是指混凝土構件的自由表面面積,用於代表預設直線 破壞表面的較大基底。

撬破破壞是一種破壞模式,其中錨栓的的埋深受限,並且加諸 剪力荷載,展現出充分的旋轉,因而產生撬起的裂口,而主要 的斷裂表面出現在施加荷載的位置後方。這種破壞模式與空邊 的存在與否無關。

拔出破壞是一種破壞模式,在尚未發展出完整的鋼材或混凝土 承載力時將錨栓拔出混凝土,就會產生這種破壞。

在拔出破壞這種破壞模式中,錨栓主體是在完整的鋼材或混凝 土承載力尚未形成時,透過膨脹機制而拔出。

側面爆出強度是指埋深較深但側蓋較薄的錨栓,在混凝土沿著內嵌頭周圍剝落,但混凝土表面頂端沒有出現重大破損時的強度。

鋼材破壞是鋼質錨栓部件破裂的破壞模式。

輔助鋼筋這種加固方式的作用是抑制潛在混凝土破損面,但不具有將錨栓的完整設計荷載轉移到結構構件的用途。

扭矩控制膨脹錨栓是一種後置膨脹錨栓,安裝方法是透過施加扭力,將椎柱拉進膨脹套筒,而使一或多個套筒或其他元件對 鑽孔側面膨脹。安裝之後,拉力荷載可能造成進一步膨脹 (後續 膨脹)。

自切底錨栓是一種後置錨栓,藉由自切底混凝土產生的機械聯 鎖而衍生可維持拉力的強度,這種強度係藉由特殊工具或錨栓 本身在安裝時所達成。

3.1.2 使用在混凝土和磚石中的錨栓

後置錨栓螺栓可用在各種建築錨定應用中,包括柱狀底版、支援機械和電氣維修、固定建築物外墙,以及錨定護欄。臨界連接意指與安全性相關的連接件,或在發生破壞時可能導致重大經濟損失的連接件,必須採用穩固的錨栓解決方案,以便提供可檢驗且耐用的荷載方式。因此,選擇適用的錨栓系統並將其納入連接設計,需要對錨定的基礎原理有透徹瞭解。

此處提供通用性概觀,而本節末尾另提供其他參考資料。

3.1.3 錨栓作業原理

專為混凝土和磚石設計的錨栓對拉力荷載發展出抗性時,是以下列一或多種機制為基礎:

摩擦:多數後置式機械膨脹錨栓都是使用這種機制來承受拉力荷載,例如HSL-3 和 HST3。安裝錨栓時,錨栓和鑽孔牆壁之間產生的膨脹力所導致的摩擦阻力,也可能藉由混凝土的局部變形而獲得補充。摩擦力與錨栓產生的膨脹應力大小呈正比。HST3 這類扭矩控制膨脹錨栓會利用後續膨脹來增加膨脹力,藉此應對拉力荷載的增加超出實用荷載水平(預荷載)的情況,或針對基材狀態發生變化(破裂)時做出調整。

鍵接:自切底錨栓,以及在較小程度上,某些膨脹錨栓類型, 會依賴錨栓對鑽孔牆面的變形產生的的聯鎖來抵抗承受的拉力 荷載。基材在錨栓支承表面的介面所產生的支承應力,可能會 因為應力狀態的三軸性質而達到相對較高的水平而不會發生破 裂。喜利得 HDA 這類自切底錨栓可對基材條件的變化提供更大 的韌性,且在多數錨定需求中都能代表最穩固的解決方案。

黏結 (黏著): 化學型錨栓系統利用化學藥劑和錨栓元件之間及化學藥劑和混凝土之間的黏結機制,將施加在錨栓元件上的荷載轉移到混凝土。可達的黏結程度會受到安裝錨栓當時的孔壁條件所影響。喜利得的 HIT-HY 200 R V3等注射式錨栓系統可為各式各樣的錨定應用方式提供無可比擬的彈性和極高的黏結抗力。

喜利得 HIT-Z 螺桿這類混合錨栓元件結合了化學型錨栓系統的 功能和扭矩控制膨脹錨栓的運作原理,讓現場條件不佳的工地 得以提高可靠性。

抗剪強度:多數錨栓會透過錨栓元件對靠近基材表面的孔壁的 承載而產生對剪力荷載的抵抗。剪力荷載可能會造成表面剝 落、在錨栓元件上產生顯著的彎曲應力和次要拉力。

3.1.4 錨栓在荷載下的行為

承受拉力造成破壞時, 錨栓可能會表現出一或多種可識別的破壞模式。這些文件包括:

- 鋼材拉力破壞
- 錨栓拔出破壞
- 化學藥劑黏著失敗
- 混凝土拉破破壞
- 混凝土劈裂破壞
- 側面爆出破壞

錨栓受力發生剪力破壞時的破壞模式可依特性區分為:

- 鋼材在拉力/剪力下破壞
- 混凝土邊緣拉破破壞
- 撬破破壞

錨栓預應力

一般來說,安裝妥當的錨栓在預期的實用荷載水平下,不會因為施加預先指定的安裝扭力而表現出可見的撓度。外部拉力荷載會造成連接中的夾緊力降低,而相應的螺栓拉力增加很少。 錨栓的預荷載力所產生的支承和摩擦力組合,可抵抗剪力荷載。

荷載水平超出夾緊荷載時,錨栓撓度會增加,且錨栓的回應會 根據錨栓抗力機制而變化。能夠產生後續膨脹的膨脹錨栓會針 對錐柱和膨脹元素的相對移動,呈現更大的撓度。化學型錨栓 會對應

化學藥劑和基材之間的黏著性流失而表現出剛性的變化,其中不均勻的孔壁和黏結塞栓之間的摩擦,會在位移水平增加時產生拉力抗阻。在所有案例中,錨栓/元件應力等級的提升,都會造成錨栓位移增加。

長期行為

下列為幾種可能影響後置錨栓系統長期行為的因素。

化學型錨栓系統:

- 預緊力鬆弛 疲勞
- 化學抗性/耐用性 混凝土開裂
- * 潛變◆ 腐蝕
- 凍結/解凍條件 高溫 火災 地震荷載

機械錨定系統:

- 預緊力鬆弛
- 腐蝕
- 疲勞 火災
- 混凝土開裂地震荷載

所有適用強度設計方法的喜利得化學型錨栓系統都已按照 ACI 355.4 和 ICC-ES 驗收標準 AC308 進行了持續負載條件測試。

3.1.5 錨栓設計

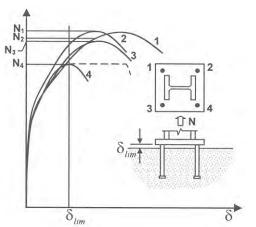
錨栓的設計是以荷載條件和錨固承載力的評估為依據。強度設計 (SD)、極限狀態設計 (LSD) 和容許應力設計 (ASD) 方法都是目前台灣用於設計錨栓的方法。

強度設計:設計錨栓的強度設計方法已經併入多部法規中,例如 IBC 和 ACI 318/土木 401。這套方法會對多種可能的破壞模式分別指定特定強度折減係數,藉此提供個別破壞模式的強度預測,並與加上因數化荷載的控制強度比較。相比 ASD 方法,強度設計方法在預估錨栓抗性時更準確。第 3.1.6 節內容會討論已經併入 ACI 318/土木 401 第 17 章的強度設計方法。強度設計是一種先進方法,喜利得建議在適用情況下皆採用此方法。

極限狀態設計: CSA A23.3 附件 D 中有收錄並說明設計錨栓時的極限狀態設計方法。原則上,此方法遵循強度設計的概念,但應用不同的強度折減因數。相比 ASD 方法,極限狀態設計方法通常能產生更準確的錨栓抗性預估結果。第 3.1.7 節會深入討論此方法。

容許荷載:在容許應力設計方法中,容許荷載(或稱抗性)的依據是對實驗室破壞測試的平均結果套用的安全係數,無論在測試中觀察的控制破壞模式為何。安全係數的目的是計入荷載中可合理預期的變化。根據對兩個錨栓和四個錨栓的錨栓群組及空邊附近單個錨栓的測試,錨栓間距和邊距的校正值會再發展為個別係數。這些係數會在特定錨栓佈局中相乘。第3.1.9節會深入討論此方法。目前容許應力設計方法通常使用於磚石的應用中

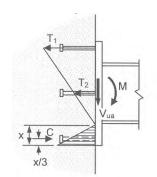
3.1.6 ACI 318/ 土木 401 第 17 章 強度設計 — SD (LRFD)


ACI 355.2、ACI 355.4、ACI 318/ 土木 401 第 17 章和ICC-ES 的 AC193 機械錨栓允收標準和 AC308 化學型錨栓允收標準皆 有參照強度設計方法。

強度設計 (SD) 術語

強度設計規範中使用的術語與 ACI 318/ 土木 401 第 2 章的詞彙一致。

荷載分佈


根據 ACI 318/ 土木 401 第 17.2 節,除非標準錨栓強度明顯可見是由韌性鋼元件所控制,否則荷載分佈的測定依據應為彈性分析。採用彈性分析 (錨栓完全降伏的假設) 時,務必檢查變形的相容性。

變形 (位移) 不相容性範例

多數情況下,彈性分析都會產生令人滿意的結果,且也建議採用。但請留意,若要假設錨栓荷載與施加的荷載規模以及與錨栓群組中立軸距離成線性比例,則附掛件 (例如底版) 的剛性與錨栓的軸向剛性相比必須充足。如需詳細了解標準柱狀底版組件的彈性荷載分布,請讀者參照 Blodgett, O., "焊接結構設計", The James F. Lincoln Arc Welding Foundation, Cleveland, Ohio。

備註:喜利得的 PROFIS 錨栓分析和設計軟體在假設剛性底版 條件之下,執行了簡化的有限元件分析,在彈性的基礎上建立 錨栓荷載分布。

樑牆連接的彈性荷載分布範例

螺栓彎曲 — 強度設計

ACI 318/ 土木 401 並未在設計準則中詳細考量螺栓彎曲的可能性。何時當間隙未灌漿時,建議將螺栓彎曲視為可能的剪力破壞模式,因為它可能成為控制剪力破壞模式。根據 ETAG 001 附件 C 第 4.2.2.4 部分,計算標準剪力強度時,可對間隙條件產生的剪力荷載執行額外的檢測。

$$V_s^M = \frac{\alpha_M \cdot M_s}{\ell}$$

其中:

 α_{M} = 彎矩校正值 $1 \le \alpha_{M} \le 2$

M_s = 單一錨栓的抗彎強度

 $= M_s^0 \left(1 - \left(\frac{N_{ua}}{\Phi N_{sa}} \right) \right)$

M_{.0} = 單一錨栓的特性抗彎強度

= 1.2 · S · f_{umin}

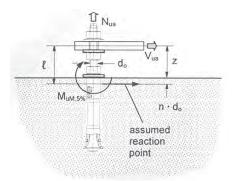
fumin = 錨栓元件的最低標準極限抗拉強度

S = 錨栓在混凝土表面的彈性斷面模數 (假設橫斷 面均勻)

 $= (\pi * d^3) / 32$

= 針對混凝土表面的剝落而調整內部槓桿臂。 如下所示:

= $z + (n \cdot d_s)$


= 從底版中央到混凝土表面的距離 (隔離距離)

d = 混凝土表面的錨栓外直徑

n = 0, 在混凝土表面以螺帽和墊圈組件提供 夾緊力進行加載的情況 (機械錨栓必需)

0.5, 加載時沒有在混凝土表面進行夾緊的情況, 例如在混凝土表面沒有螺帽和墊圈的化學型錨栓

請注意,以隔離安裝方式安裝後置式機械錨栓時,需要在混凝土表面使用螺帽和承重墊圈,如下所示,以便讓錨栓正常運作並妥善承受壓力荷載。

螺栓彎曲測定 — 強度設計

3.1.7 CSA A23.3 附件 D 極限狀態設計

CSA A23.3 附件 D 的規定中將錨栓的極限狀態設計納為參考, 內容涵蓋了符合 ACI 355.2 和 ACI 355.4 評估的有頭螺栓、彎 鉤螺栓和後置錨栓。此外,若要將後置錨栓使用於混凝土,必 需經過 ACI 355.2 和 ACI 355.4 初步鑑定測試確認適用性。

荷載分佈

CSA A23.3 附件 D 和 ACI 318/ 土木 401 第 17 章的規定都是以相同假設為基礎。請參考第 3.1.6.2 節了解詳情。

3.1.8 喜利得簡化設計表

喜利得簡化設計表並非異於 ACI 318/ 土木 401 第 17 章或 CSA A23.3 附件 D 規定的新式錨栓設計「方法」,而是一系 列預先計算的表格和折減因數,目的是協助設計師快速計算喜 利得錨栓系統承載力的同時,依然符合 ACI 和 CSA 的法規和 準則。

喜利得簡化設計表的格式類似容許應力設計 (ASD) 表和折減係數,後者是後置錨栓設計實作的標準。

喜利得簡化設計表結合了根據 ASD 方法執行計算的簡便性和法規要求的測試,以及 ACI 318/ 土木 401 第 17 章與 CSA 附件 D 中的評估標準和技術資料。

簡化表資料開發

簡化表有兩種表格類型:單一錨栓承載力表和折減係數表。

單一錨栓承載力表所示為單一錨栓的拉力和剪力設計強度(ACI) 或因數化抗阻(CSA)。此為單一錨栓在沒有邊距或混凝土厚度 影響下的承載力、依據為各表下方的註解所說明的假設。

折減因數表的建立系基於對比對單一錨栓承載力與納入特定邊 距、間距或混凝土厚度的影響後產生的承載力,採用的是 ACI 318/ 土木 401 第 17 章的方程式。

喜利得機械錨栓或喜利得 HIT-Z(-R) 螺桿

單一錨栓的抗拉承載力是以混凝土破壞強度或拔出強度二者之中的較小值為依據:

ACI/AC308: $\Phi N_n = \min |\Phi N_{cb}; \Phi N_{pn}|$ CSA: $N_r = \min |N_{cbr}; N_{cpr}|$ $\Phi N_z = N_z$

剪力值是以撬破強度為依據。

ACI/AC308: $\Phi V_n = \Phi V_{cp}$ CSA: $V_r = V_{cpr}$ $\Phi V_n = V_r$

混凝土拉破和撬破的計算依據是 ACI 318/ 土木 401 第 17 章和 CSA A23.3 附件 D,並採用產品特定的 ICC-ES 評估服務報告 (ESR) 中的變量。這些數值是等效的。

ACI 或 CSA 並不認可扭矩控制化學型錨栓的拔出測試,因此須以 AC308 第 3.3 節和 N 值 或取自 ESR-3187 的 N 來測定。此方法與機械錨栓拔出強度的計算方法類似。ACI 和 CSA 值等效。

採用標準螺桿、鋼筋和喜利得HIS-(R)N內牙螺桿的喜利得化學型錨栓

單一錨栓的抗拉承載力是以混凝土破壞強度或黏結強度二者之中的較小值為依據:

ACI: $\Phi N_n = \min | \Phi N_{cb}; \Phi N_a |$ $CSA/ACI: N_r = \min | N_{cbr}; N_a |$ $\Phi N_a = N_r$

剪力值是以撬破強度為依據。

ACI: $\Phi V_n = \Phi V_{cp}$ CSA/ACI: $V_r = V_{cpr}$ $\Phi V_n = V_r$

混凝土拉破、黏結和撬破的計算依據是 ACI 318/ 土木 401 第 17 章和 CSA A23.3 附件 D, 並採用產品特定的 ICC-ES 評估服務報告 (ESR) 中的變量。這些值是相等的,不過數值的計算將依據美國或加拿大指定的標準混凝土抗壓強度。

所有元件的鋼材強度

鋼材強度另以其他表格提供,且依據為取自 ACI 318/ 土木 401 第 17 章和 CSA A23.3 附件 D 的計算。ACI 和 CSA 的鋼材強度 折減係數不同,因此表中將 ACI 和 CSA 的數值一併列出。

如何使用簡化表計算錨栓承載力

計算單一錨栓或錨栓群組承載力的程序和本文件第 3.1.9 節目前所說明的 ASD 計算程序相同。

錨栓設計強度 (因數化抗阻) 的得出方式如下:

拉力:

ACI:
$$N_{des} = n \cdot min | \Phi N_n \cdot f_{AN} \cdot f_{RN}; \Phi N_{sa} |$$

CSA:
$$N_{des} = n \cdot min | N_r \cdot f_{AN} \cdot f_{BN}; N_{sr} |$$

剪力:

ACI:
$$V_{des} = n \cdot min \mid \Phi V_n \cdot f_{AV} \cdot f_{RV} \cdot f_{HV}$$
; $\Phi V_{sa} \mid \Phi V$

CSA:
$$V_{des} = n \cdot min | V_r \cdot f_{AV} \cdot f_{BV} \cdot f_{HV}; V_{sr} |$$

其中:

n = 錨栓數量

N... = 設計拉力抗阻

ΦN_n = 考量混凝土拉破、拔出或黏結破壞的設計抗 拉強度 (ACI)

ΦN_{sa} = 考量鋼材破壞的設計抗拉強度 (ACI)

N_r = 考量混凝土拉破、拔出或黏合破壞的因數化

拉力抗阻 (CSA)

N_c = 考量鋼材破壞的因數化拉力抗阻 (CSA)

V_{des} = 設計剪力抗阻

 $\Phi V_n = 考量混凝土破壞的設計抗剪強度 (ACI)$

ΦV_{sa} = 考量鋼材破壞的設計抗剪強度 (ACI)

V = 考量混凝土破壞的抗剪強度 (CSA)

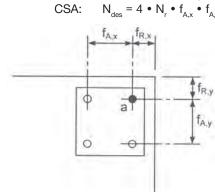
V = 考量鋼材破壞的因數化剪力抗阻 (CSA)

f_{AA} = 拉力的間距調整係數

f_n, = 拉力的邊距調整係數拉力

f_{xx} = 剪力的間距調整係數

f_w = 剪力的邊距調整係數剪力


f_{...} = 剪力的混凝土厚度調整係數 (此為 ASD 過去

未使用的新係數)

調整係數應用於所有適用的邊距和間距條件。

舉例來說,根據下圖中最壞情況錨栓「a」,與錨栓群組對應的 抗拉承載力估算方式如下:

ACI:
$$N_{des} = 4 \cdot \Phi N_n \cdot f_{A,x} \cdot f_{A,y} \cdot f_{R,x} \cdot f_{R,y}$$

CSA: $N_{des} = 4 \cdot N_r \cdot f_{A,x} \cdot f_{A,y} \cdot f_{R,x} \cdot f_{R,y}$

備註:這些設計適用於正交錨栓模式,對角放置的鄰接錨栓無 需採計折減係數。 在錨栓同時承受拉力和剪力的情況下,務須考量其相互作用。 相互作用的方程式如下:

ACI:
$$\frac{N_{ua}}{N_{des}} + \frac{V_{ua}}{V_{des}} \le 1.2$$

CSA:
$$\frac{N_f}{N_{des}} + \frac{V_f}{V_{des}} \le 1.2$$

其中:

l_{ua} = 根據 ACI 318/ 土木 401 第 5 章的因數化 荷載組合得出的必需抗拉強度。

V_{ua} = 根據 ACI 318/ 土木 401 第 5 章的因數化 荷載組合得出的必需抗剪強度。

N_f = 根據 CSA A23.3 第 8 章的因數化荷載組合 得出的必需抗拉強度。

V_, = 根據 CSA A23.3 第 8 章的因數化荷載組合 得出的必需抗剪強度。

容許完整抗拉強度的條件為:

ACI:
$$\frac{V_{ua}}{V_{des}} \le 0.2$$

CSA:
$$\frac{V_f}{V_{dec}} \le 0.2$$

容許完整抗剪強度的條件為:

ACI:
$$\frac{N_{ua}}{N} \le 0.2$$

CSA:
$$\frac{N_f}{N_{des}} \le 0.2$$

容許應力設計 (ASD)

從第 3.1.6 節得出的 N_{des} 和 V_{des} 值地方法規要求中測定。根據破壞模式或附加元件的韌性,可能需要用到是設計強度 (因數化抗阻),且將與取自 ACI 318/ 土木 401 第 5 章或 CSA A23.3 第 8 章因數化荷載組合的必需抗拉和抗剪強度進行比較。

設計強度 (因數化抗阻) 可轉換成 ASD 值,如下所示:

$$N_{\text{des,ASD}} = \frac{N_{\text{des}}}{\alpha_{\text{ASD}}}$$

$$V_{\text{des,ASD}} = \frac{V_{\text{des}}}{\alpha_{\text{ASD}}}$$

其中

α_{ASD} = 當作控制荷載組合的加權平均荷載係數計算 的轉換係數。

α_{ASD} 如針對 ACI,範例如下:

採用控制荷載組合的強度設計:

 $1.2D + 1.6L < \phi N_{\perp}$

容許應力設計 (ASD):

 $1.0D + 1.0L < \phi N_n / \alpha_{ASD}$

因此, 計算相等的安全等級時為:

 $\alpha_{ASD} = (1.2D + 1.6L) / (1.0D + 1.0L)$

如果靜荷載的貢獻為 40% 而活荷載的貢獻為 60%, 結果為:

 $\alpha_{ASD} = (1.2 \times 0.4 + 1.6 \times 0.6) / (1.0 \times 0.4 + 1.0 \times 0.6)$

 $\alpha_{ASD} = 1.44$

抗震設計

若要確定抗震設計強度 (因數化抗阻) 折減係數, α_{seis} 會套用到 適用的表格數值。 α_{seis} 的數值可在相關設計表格的註解中參 Ω

 α_{seis} 的數值拉力折減係數 α 是以測試中確定的折減係數0.75 為基礎。表中註解有提供完整折減數據。

α_{seis} 的數值鋼材破壞的 α 值是以測試為依據,且通常只適用於 剪力。不會額外套用 0.75 的係數。表中註解有提供折減數據。

且通常只適用於剪力。不會額外套用 0.75 的係數。表中註解有提供折減數據。

用於與設計強度 (因數化抗阻) 比較的因數化荷載和相關地震荷載組合容許應力設計 (ASD)可從 ACI 或 CSA 規定和國家或從第 3.1.6 節得出的 Ndes 和 Vdes 值地方法規要求中測定。根據破壞模式或for ϕ_{Lighter} 附加元件的韌性,可能需要用到額外數值。

持續荷載與倒吊施工

僅適用於化學型錨栓的持續荷載計算方式為by multiplying the value of ΦN_n 將 N_r 值乘以 0.55,並將該值 與因數化荷載的拉力靜荷重分量 (以及任何持續的活荷載或其他荷載)進行比較。評估持續荷載時,不必考量邊緣、間距和混凝土厚度的影響。

簡化表的準確度

使用簡化表計算時,得出的設計強度 (因數化抗阻) 有可能正好是使用 ACI 318/ 土木 401 第 17 章或 CSA A23.3 附件 D 中的方程式的計算結果。

混凝土 / 黏結 / 拔出破壞或鋼材破壞的單一錨栓設計強度 (因數化抗阻) 表格使用的都是相同數值,並會使用 ACI 和 CSA 的規定來計算。

邊距影響的荷載調整係數是以邊緣附近的單一錨栓為基礎。間距的荷載調整係數是由兩個鄰接錨栓的影響決定的。每個折減係數都是針對混凝土或黏結破壞的最小值計算的。如果存在多個邊距和/或間距條件,荷載調整係數就需要相乘。相比以 ACI或 CSA 為依據的完整計算,這種計算方式會得出保守的設計。此外,如果單一錨栓表格的破壞模式取決於混凝土破壞,而折減係數取決於黏結破壞,也會得出保守的數值 (反之亦然)。

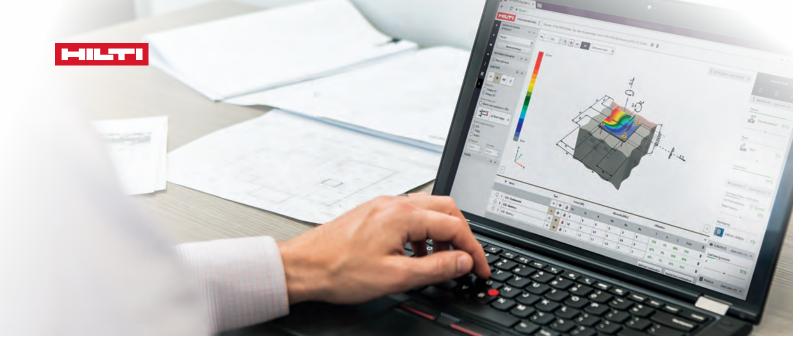
以下為針對簡化表準確性的通用摘要

- 單一錨栓表格使用的值等於以 ACI 或 CSA 為根據所計 算的值。
- 既然包含荷載調整係數在內的表格數值是使用非線性的 方程式所計算,線性的內插法就不適用。請使用兩個表 格數值中較小者。如果應用介於混凝土抗壓強度、埋 深或間距、邊距和混凝土厚度之間,就會得出保守的數 值。
- 如為靠近某個邊緣的一個錨栓,採用邊距係數通常會得 出準確的數值,前提是表格數值的破壞模式相同。如果 破壞模式不同,數值就會比較保守。

- 如為承受拉力的二到四個錨栓,且不採計邊緣折減,套 用間距係數會得出與 ACI 和 CSA 計算所得數值相等的 值,前提是表格數值的控制破壞模式相同。如果破壞模 式不同,數值就會比較保守。
- 如與不採計邊距的兩個錨栓比較,剪力的間距係數便較保守。此係數的依據為邊緣附近的間距,對於遠離混凝土構件邊緣的安裝方式,該係數可能會趨於保守。注意:為了得出較不保守的結果,如果無需考量邊距,則可在此應用方式中使用拉力的間距係數。
- 如與沒有邊緣影響的錨栓比較,剪力的混凝土厚度係數 較保守。此係數以邊緣附近的應用方式為基礎。在混凝 土構件中間,該數值較保守。注意:為了得出較不保守 的結果

重要提示:

在薄樓板角落應用四個螺栓或六個螺栓的錨栓型態時,如與根據 ACI 或 CSA 所做的計算相比,並且採用 PROFIS Engineering 時,計算結果為保守數值的可能性高達 80%。建議始終使用 PROFIS Engineering 或採用 ACI 和 CSA 的規定手動計算,藉此最佳化設計。如果簡化表的計算提供的數值無法滿足設計要求,則更需採行上述建議。即便簡化表的計算結果並不超過設計荷載,並不代表喜利得錨栓系統無法滿足設計要求。您當地的喜利得代表仍可以提供其他協助。


使用簡化表時的限制

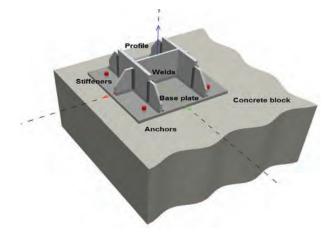
簡化表仍有其他沒有考慮的限制存在:

- 荷載組合:表格數值的用途是搭配 ACI 318/ 土木 401 第 5.3 節和 CSA A23.3 第 8 章的荷載組合使用。其他法 規章節的荷載組合皆不納入考量。
- 輔助鋼筋:包括折減係數在內的表格數值,是以條件 B 為依據,並不將輔助鋼筋的效果納入考量,也沒有影響 係數可套用來採計輔助鋼筋。
- 偏心荷載:目前,仍沒有方法可將係數套用到表中計算偏心荷載。
- 彎矩或扭矩:雖然設計師可將彎矩或扭矩套用到錨栓系 統,並取得個別錨栓的特定荷載,但表格本身並沒有特 定的係數來說明錨栓系統承受的彎矩或扭矩。
- 間隙:鋼材設計表並不將間隙納入考量。
- 錨栓分布:簡化表的假設為正交分布,附近邊緣不超過 2 個。

根據上述內容,雖然簡化表的應用範圍有限,但設計師可使用 不採計上述條件的 PROFIS Engineering。

可能仍有其他以上未提及的應用方式。如對特定應用方式有任何疑問,請聯絡喜利得。

3.1.9 錨栓設計軟體



PROFIS Engineering 錨栓設計軟體能解決在我們的行業中最常見的設計挑戰,還能夠節省時間和施工成本,設計鋼材與混凝土/後置植筋的連接。

增加設計效率

• 雲端版本讓您在任何位置輕鬆查看您的設計

• 錨固系統綜合解決方案包括底板、加強板和焊接

馬上註冊

了解更多資訊以及馬上 就可使用!

更多資訊

Ask HILTI 平台提供專家 建議和各式各樣的研討會

3.1.10 容許應力設計 (ASD)

容許應力設計 (ASD) 術語

A_{nom} = 標準螺栓斷面面積,in.² (mm²)

A_{si} = 錨栓套筒斷面面積, in.² (mm²)

A_{ct} = 螺紋部分的抗拉應力面積, in.² (mm²)

c = 錨栓中線到基材最近空邊的距離, in. (mm)

c_{cr} = 臨界邊距, in. (mm)

c_{min} = 最小邊距, n. (mm)

d = 錨栓螺栓直徑 (柄直徑), in. (mm)

d_{bit} = 標準鑽頭直徑, in. (mm)

d_h = 附掛件 (例如底版) 的穿通孔直徑,in. (mm)

d_{nom} = 標準錨栓直徑, in. (mm)

d。 = 錨栓外直徑 (O.D.), in. (mm)

d... = 塾圈直徑, in. (mm)

f_a = 錨栓間距調整係數

f。 = 經圓柱型測試得出的混凝土抗壓強度, psi (MPa)

f'。 = 特定混凝土抗壓強度, psi (MPa)

f = 邊距調整係數, 加載拉力

 f_{DM} = 邊距的調整係數, 以垂直方向朝空邊加載剪力

· Buz = 邊距的調整係數,以平行方向朝空邊加載剪力

 f_{RV3} = 邊距調整係數,以垂直方向朝空邊逆向加載剪力

f_v = 特定鋼筋降伏強度, psi (MPa)

F. = 特定螺栓最小極限強度, psi (MPa)

h = 用於插入錨栓的構件厚度,以平行錨栓軸向的方向

測量,in. (mm)

h_{ef} = 有效錨栓埋深,in. (mm)

h_{min} = 最小構件厚度, in. (mm)

h_{nom} = 基材表面與錨栓底部之間的距離 (錨栓安裝前可適用), in. (mm)

h。 = 基材全直徑孔洞深度, in. (mm)

ℓ = 錨栓埋深, in. (mm)

 ℓ_{th} = 錨栓可用螺紋長度, in. (mm)

M_{uM,5%} = 錨栓的特徵抗彎強度 螺栓 (5% 分位數), in-lb (N·m)

N_a = 容許拉力荷載, lb (kN)

N_d = 設計拉力荷載 (未因數化), lb (kN)

N_{rec} = 建議拉力荷載,lb (kN)

= 錨栓軸向間距,in. (mm)

。 = 鄰接受力錨栓之間的臨界間距,in. (mm)

s_{min} = 鄰接受力錨栓之間的最小間距,in. (mm)

S = 錨栓螺栓的彈性斷面模數, in.3 (mm3)

s_w = 錨栓螺帽的對邊寬度, in. (mm)

t_{fix} = 待緊固的附掛件(例如底版) 的最大厚度, n. (mm)

T_{inst} = 建議錨栓安裝扭矩, ft-lb (N·m)

T_{max} = 最大鎖緊扭矩, ft-lb (N·m)

V_{allow} = 容許剪力荷載 (根據取自測試的平均值和通用

安全係數,lb (kN)

V_d = 設計剪力荷載 (未因數化), lb (kN)

V_{rac} = 建議剪力荷載, lb (kN)

一般需求和建議荷載

根據一般 ASD 原則, 錨栓的設計必須滿足以下條件:

 $N_{\text{service}} \le N_{\text{rec}}$ $V_{\text{service}} \le V_{\text{rec}}$

其中 N_{service} 和 V_{service} 是主導荷載組合 (亦即 ASCE 7-10) 產生的 拉力和剪力荷載,而 N 和 V 是錨栓或錨栓群組的建議容許荷載。

ASD 方法目前收錄在磚石相關的 ICC-ES AC01、AC58、AC60 和 AC106 參考資料中。

錨栓或錨栓群組建議容許荷載的得出方法如下:

 $N_{rec} = N_{allow} \cdot f_{RN} \cdot f_{A}$ 拉力: 剪力: $V_{rec} = V_{allow} \cdot f_{RV} \cdot f_{\Delta}$

其中:

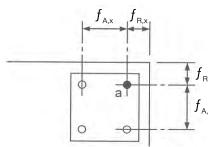
 f_{Δ}

= 建議拉力荷載 N_{rec}

= 容許荷載 (以實驗室破壞測試的平均值和通用安全 N_{th} 係數為依據)

= 建議剪力荷載 = 容許剪力荷載

= 錨栓間距的調整係數 = 邊距的調整係數, 拉力荷載


= 邊距的調整係數, 以垂直方向朝空邊加載剪力

= 邊距調整係數,以平行方向朝空邊加載剪力

= 邊距的調整係數, 以垂直方向朝遠離空邊一側加載

調整係數是乘數值, 適用於分別小於 c, 和 s, 的所有邊緣和間

舉例來說,與下圖的錨栓「a」對應的建議拉力荷載的評估方式 如下:

$$F_{\text{rec,a}} = F_{\text{allow,a}} \cdot f_{\text{Rx}} \cdot f_{\text{Ry}} \cdot f_{\text{Ax}} \cdot f_{\text{Ay}}$$

請注意、對角放置的鄰接錨栓不需要任何折減係數。

臨界及最小間距和邊距

間距調整係數適用的情況為錨栓間距如下:

其中:

= 受力錨栓的最小間距;且

= 受力錨栓之間的臨界間距(與需要折減係數的錨栓 間距相等或更大的錨栓間距)

同樣地、近邊錨栓的邊距調整係數可套用在錨栓邊距如下的案 例中:

 $C_{min} \leq C < C_{ci}$

其中:

= 最小邊距:月

= 臨界邊距(與需要折減係數的邊距相等或更大的 錨栓邊距)

相互作用 — ASD

錨栓同時承受拉力和剪力的情況下, 就必須考量相互作用。錨 栓的相互作用方程的通常形式如下:

$$V_{\text{rec}} = \left[\frac{N_{\text{d}}}{N_{\text{rec}}}\right]^{\alpha} + \left[\frac{V_{\text{d}}}{V_{\text{rec}}}\right]^{\alpha} \le 1.0$$

其中

= 設計拉力荷載 (ASD) ; V, = 設計剪力荷載 (ASD);且

= exponent, $1 \le \alpha \le 2$

用於 α 的值對應至相互作用方程式。 α = 1.0 的值對應至直線相 互作用方程式,而 $\alpha = 5/3$ 的值對應至拋物線相互作用方程式。

槓桿臂的剪力荷載 (螺栓彎曲) — ASD

將剪力荷載作用於隔離連接時,錨栓螺栓會承受剪力和彎曲的 結合,此情況適於另外對隔離條件進行評估。對於承受在隔離 z 處施加的剪力荷載的錨栓,推薦的與螺栓彎曲相關的剪力荷載 可按如下方式評估:

$$V_{rec} = \frac{\alpha_M \cdot M_{uM,5\%}}{1.7 \cdot \ell}$$

其中:

= 與旋轉限制相關的彎矩調整 1 ≤ α_M ≤ 2

= 對應彎曲的建議剪力荷載

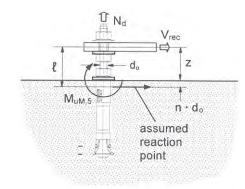
= 對應將近 1/2 度旋轉的單一錨栓特徵抗彎能力

= 1.2 * S *
$$f_{u,min} \left(1 - \frac{N_d}{N_{max}} \right)$$

= 錨栓的最小極限抗拉強度

= 錨栓螺栓在混凝土表面的彈性斷面模數 (假設斷面一致)

= 針對混凝土表面的剝落而調整的內部槓桿臂 如下:


 $= z + (n \cdot d_a)$

= 從底版中間到混凝土表面的距離 (隔離距離)

= 混凝土表面的錨栓外直徑

= 0. 適用於在混凝土表面由螺帽和墊圈組件提供 夾緊力時的靜態荷載 (機械錨栓所需);

> = 0.5, 適用於混凝土表面沒有夾緊力的靜態荷載, 例如在混凝土表面沒有螺帽和墊圈的化學型錨栓

螺栓彎曲的測定 — ASD

請注意,以隔離安裝方式安裝後置機械錨栓時,需要在混凝土 表面使用螺帽和承重墊圈. 如上所示. 以便讓錨栓正常發揮作

提高短期荷載的承載力 — ASD

有些建築法規允許在針對短期的風力或地震等荷載進行設計 時, 提高 1/3 的承載力 (應力)。針對錨栓設計提高 1/3 荷載的 由來已不可考,但通常預設可解決兩個不同問題:1) 應變率效 應,即有些材質的抗性會因應暫時應力峰值而上升;以及2)永 久與暫時性荷載同時發生的可能性較低。

雖然喜利得並未將 1/3 的增量收錄在公開的混凝土錨栓承載力 中,但設計師有責任根據適用法規、判斷是否應採計此承載力 增量。

3.1.11 錨栓扭矩和預緊力

應用扭矩的目的是對錨栓螺栓施以拉力。因此、重要的是、在 安裝錨栓過程中, 與錨栓螺帽、墊圈和螺紋錨栓元件相關的扭 矩-拉力關係必須盡可能維持接近出廠的條件。

要做到這一點,最好將錨栓群組件放在原包裝中,以免在安裝 錨栓前意外沾染灰塵、油污等。請注意、在安裝錨栓後企圖將 它重新拉直或鐵錘敲擊導致的錨栓螺紋損壞,可能會顯著改變 扭矩和拉力的關係,進而導致錨栓在荷載下運作不正常,包括 破壞。同樣地、對螺紋施用潤滑劑、可能會在施加扭矩時對錨 栓產生過度預緊荷載,這也可能造成破壞。

對混凝土或磚石中的錨栓螺栓施加扭矩的可能理由有三種:

- 1. 產生夾緊力,因而消除相連部件的內部間隙。請注意,由 於夾緊力會隨時間的推移而鬆弛,因此該夾緊力被認為並 不足以允許在底版摩擦力的基礎上確定錨固的抗剪能力(即作為滑動的關鍵條件)
- 2. 在錨栓中產生的預緊力, 由基材 (混凝土或磚石) 的對應預 壓力所承受。預緊力用於減少工作載荷下的錨栓位移,也 可用于減少週期性載荷的疲勞效應。
- 3. 驗證錨固可承受建議扭矩產生的拉力預荷載。這麽做有助 於降低錨栓過度安裝錯誤和/或基材完全不適用的可能性。

由於會在混凝土中鬆弛,在螺栓螺紋中也會有小程度鬆弛,錨 栓的預緊力會隨時間而消散。對螺栓重新施以扭矩可產生較高 程度的殘餘預力。

在混凝土可能發生開裂的情況 (例如地震荷載) 中, 不應計入錨 栓預緊力。

3.2.1

3.1.12

3.1.12 錨栓的抗疲勞設計

用於承受疲勞荷載的結構元件設計,對連接件設計可能有顯著 影響。讀者可參考相關標準,加強了解此主題的額外資訊。錨 栓的抗疲勞設計應考慮以下重點:

- 1. 為防止錨栓元件中的應力波動而施加的預緊力可能會因 為預荷載隨著時間的推移而逐漸喪失而變得複雜,特別 是在基材可能發生開裂的情況下,並且許多錨栓設計沒 有提供足夠的長度來允許產生有意義的預緊應變。
- 2. 由於荷載分布不均,錨栓群組的抗疲勞設計經常比單一 錨栓的設計更為關鍵。會影響荷載分布的因素有錨栓滑 移、錨栓及底版之間的環狀間隙,以及錨栓相對於底版 孔洞的特定位置。因此,在錨栓群組需承受顯著疲勞荷 載的情況下,建議透過銲接墊圈、灌漿或其他方法,消 除錨栓及底版之間的環狀隙。
- 3. 偏心距或連接時的間隙產生的次要彎曲應力,對於錨栓的疲勞行為可能很關鍵。

3.1.13 錨栓的防火設計

建築法規對於火災條件的專用錨栓設計需求通常隻字未提。不過,我們可以假設,與混凝土或磚石之間的結構性連接如果需承受持續的靜荷重和活荷載,就必須採取與其它結構鋼材同等級的火災暴露防護措施,亦即採用適當的防火材質、混凝土保護層等。

某些情況下,可能有必要確認未加以防護的錨固在火災暴露中可倖存的時間長度。火災條件下的錨栓設計

是以錨栓在荷載下承受標準化時間溫度曲線 (例如 ASTM E 119、ISO 834) 的效能測試資料為基準。

3.2 化學型錨栓系統

3.2.1 化學型錨栓系統總覽

喜利得在產品與教育方面處於領先地位

喜利得藉由教導使用者了解喜利得化學型錨栓系統的各種面 向,成為知識與經驗分享的領導者。我們知道針對特定應用方 式選擇正確化學型錨栓系統非常重要。

在比較兩種化學型錨栓系統時,使用者應特別注意以下關鍵參數:

- 基材的含水條件
- 可用或優先的鑽孔方法
- 基材條件 (例如開裂混凝土)
- 固化時間
- 安裝程序
- 黏結強度
- 温度靈敏度
- 抗潛變性
- 檢查需求

常見問答

什麼是潛變?

潛變是指材料隨著時間緩慢且持續變形。所有材料都會經歷某程度的潛變,無論是混凝土、鋼材、石材和化學型錨栓系統都是。一般來說,不斷持續的荷載造成的微小變形很常見,且潛變只在發生過度變形時才會造成問題。

• 所有現行的喜利得化學型錨栓系統都已通過 ICC-ES AC308 或 ICC-ES AC58 的潛變測試要求。

溫度會影響化學型錨栓的性能嗎?

會,從儲藏到安裝,再到錨栓本身的整個壽命循環,溫度對化 學型錨栓系統的整個生命週期都有影響。

 溫度是影響化學型錨栓系統強度、固化時間、安裝簡易性 和潛變性能的重要因素。有些化學型錨栓系統的設計適用 於較冷的氣候環境,其他則是用於較暖的氣候。高溫通常 會軟化黏結材料,而低溫則會讓化學藥劑無法完全固化。 這兩種環境都會導致接合強度減弱。每項產品在安裝時及 整個錨栓使用壽命中,都有不同的高低溫門檻值。

安裝對化學型錨栓有何影響?

對化學型錨栓系統的接合強度和性能而言,適當的安裝是對使用者最有影響的單一因素。

• 喜利得是唯一能夠提供完整解決方案的製造商,從鑽孔和 清潔孔洞,到注射化學藥劑至深達 318公分的鑽孔,通通 包辦。

ICC-ES AC58 和 ICC-ES AC308 是什麼?

ICC-ES AC58 是一項 1995 年發佈的允收標準,用於評估使用在混凝土和磚石基材中的化學型錨栓系統。2005 年,ICC-ES AC308 發佈,專門用於評估混凝土中的化學型錨栓,ICC-ES AC58 則變為專用於處理磚石基材。整體而言,AC308 根據化學型錨栓系統行為的相關研究,改善了這類系統使用在混凝土時的測試和評估方式。AC58 對於使用在磚石中的化學型錨栓系統而言,仍是先進的準則。

喜利得始終專注於採取最高標準來評估化學型錨栓系統。因此,喜利得仍繼續以 AC308 和 AC58 為依據,維持使用 ICC-ES 評估報告來分別評估混凝土中和磚石中的化學型錨栓。

喜利得化學型錨栓系統

為了因應現代建築專案中可見的各種條件,喜利得提供最完整的化學型錨栓產品選擇。我們將它稱為 HIT 產品組合。無論您在工地現 場採取什麼應用方式,喜利得都能提供適合的產品。

HIT 產品組合中的每項產品都是採用同樣嚴格的標準所開發,而在背後以經驗提供後盾的,正是為世界帶來注射式化學型錨栓系統的 喜利得。

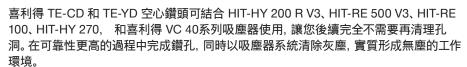
化學型錨栓	核准基材		鑽孔方法
HIT-HY 200 R V3 快速固化 鋼筋連結和重型錨定專用的終極性能混合砂漿	非開裂混凝土 開裂混凝土 灌漿磚石	Seismic ICC (ES) (NSF)	SAFE
HIT-RE 500 V3 慢速固化 鋼筋連結和重型錨定專用的終極性能環氧樹酯砂漿	非開裂混凝土 開裂混凝土	Seismic ICC FS	SAFEET
HIT-RE 100 慢速固化 混凝土中的錨定與鋼筋連結專用的高級環氧樹脂砂漿	非開裂混凝土 開裂混凝土	Seismic ICC ES	SAFE

- 必須搭配使用 HIT-Z 螺桿
 核准在開列混凝土中搭配 TE-YRT 打毛工具使用鑽石鑽頭,在非開裂混凝土則無需打毛工具

喜利得 SAFESET™ 技術簡介

在開裂與非開裂混凝土及灌漿磚石中穩固的安裝錨栓和鋼筋

無需清理


HIT-Z 螺桿

新推出的喜利得 HIT-Z 螺桿採用錐形螺旋外型,可當作扭矩控制接合錨栓來使用。這表示,如果 HIT-Z 螺桿搭配使用 HIT-HY 200 R V3, 在基材高於5°C 的乾燥或水飽和混凝土中, 它的外型會使它不受未清理的錘鑽孔洞影響。優勢明確: 在錨定應用中的步驟更少,且可靠性極高。

可自行清理的孔洞

空心鑽頭

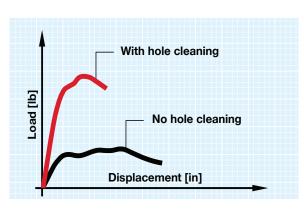
錨栓緊固技術指引

開裂混凝土中的鑽石洗孔

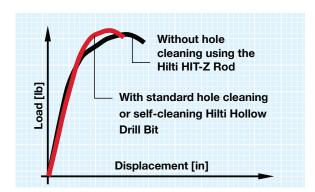
	快速固化產品組合	慢速固化	比產品組合
	HIT-HY 200 R V3	HIT-RE 500 V3	HIT-RE 100
	PHILITY PHILITY	T PRIOR PRIOR PRIOR	N PRINTED BRIDE
經實證的效能			
ICC-ES/IAMPO 評估報告	ESR-4878	ESR-3814	ESR-3829
 基材	非開裂混凝土、開裂混凝土、 灌漿 CMU	非開裂混凝土、開裂混凝土	非開裂混凝土、開裂混凝土
推薦應用方式		——————————— 錨栓和鋼筋	日常錨栓和鋼筋作業
————————————————————————————————————	HY 200 R V3: 9 分鐘	25 分鐘	30 分鐘
 疑固時間在22℃	 HY 200 R V3: 60 分鐘	6.5 小時	12 小時
鑽孔方式	SAFESET	SAFESET	SAFESET

*鑽石鑽孔是核准搭配使用 HIT-Z 螺桿的鑽孔方式。

清理孔洞


安裝錨栓和鋼筋更可靠

化學型錨栓有可能會遭遇各式各樣的施工 現場條件, 這是所有人都知道的事。為了應 付這種問題, 我們在自家高品質產品系列中 加入喜利的注射技術 (HIT)。透過喜利得 SafeSet™ 技術, 我們以搭載 VC 40 吸塵 器的空心鑽頭或 HIT-Z 螺桿, 在安裝程序中 完全省去一個步驟, 無需手動清理孔洞, 在 技術上往前邁進了巨大的一步。


無需清理孔洞的潛在效果

以傳統的注射化學藥劑安裝螺桿或鋼筋時, 如果孔洞 在鑽孔後清理不足,可承載的荷載可能極低。喜利得 SafeSet™ 系統有助於省卻清理步驟, 同時仍能提供優異 的荷載價值。

採用 SafeSet™ 技術的喜利得 HIT-HY 200 R V3注射式化學藥劑

全新 SafeSet™ 系統, 搭載 HIT-HY 200 R V3, 可讓緊固 點承受更高荷載, 宛如以傳統安裝方法清理的孔洞。

3.2.2 HY-200 R V3 化學型錨栓系統 PRODUCT DESCRIPTION

HIT-HY-200 R V3, 附 HIT-Z 螺桿、螺桿、鋼筋和 HIS-N/RN 內牙螺桿

錨栓系統 功能和優勢 使用者可根據基材溫度和工地現場需求 CLTI HILTI 選擇產品凝固時間適合性 喜利得 HIT-HY 200 R 以 SafeSet™ 空心鑽頭和吸塵器技術, 無需 V3 藥劑包 清理孔洞 在乾燥或潮濕條件下, 以錘鑽孔洞安裝 HIT-Z 螺桿, 無需清理孔洞 喜利得 HIT-Z 螺桿 經 ICC-ES 核准, 適用於開裂混凝土和抗震 僅當採用額外清理步驟時, 方可將 HIT-Z 螺 桿安裝於鑽石空心鑽孔內。 HAS-U-T(-R2) 螺桿 經 ICC-ES 核准, 適用於灌漿混凝土磚石 鋼筋 喜利得 HIS-N/RN

用於開裂和

鑽石空心鑽孔

非開裂混凝土

開裂混凝土

灌漿混凝土磚石

抗震設計類別 A-F

空心鑽頭 非開裂混凝土的

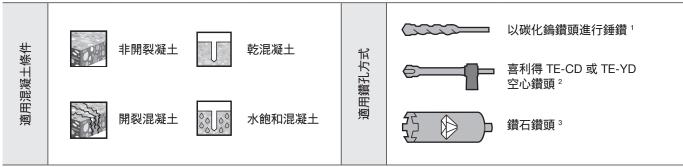
Profis Engineering 貓栓設計軟體

核准/列名認證	
ICC-ES(國際規範委員會)	在混凝土中使用 ESR-4878 符合 ACI 318/土木 401 第 17 章/ACI 355.4/ICC-ES AC308 標準 在灌漿 CMU 中使用 ESR-4878 符合 ICC-ES 標準 在混凝土中使用 AC58 ELC-4868 符合 CSA A23.3/ ACI 355.4 標準
NSF/ANSI 標準 61	在飲用水中的使用認證
歐洲技術核准	ETA-19/0601 ETA-19/0632
洛杉磯市	洛杉磯市 2020 年 LABC 補充說明(ESR-4868 內混凝土部分)磚石研究報告編號 26077
佛羅里達州建築法規	2020 年佛羅里達州建築法規(ESR-4868 內文)
美國綠色建築委員會	LEED® Credit 4.1-低放射性材料

材料規格

如需螺桿和內牙螺桿的材料規格, 請參考第 3.2.8 節。

混凝土設計資料符合 ACI 318/土木 401 標準


ACI 318/土木 401 第 17 章設計

本節採用的荷載值為喜利得簡化設計表。本節荷載表係使用強度設計參數和 ESR-3187 變數,以及 ACI 318/土木 401 第 17 章內 的公式制定而成。如需喜利得簡化設計表的詳細說明,請參閱第 3.1.8 節。ESR-3187 資料表不包含在本節,但可在以下網址參 閱: www.icc-es.org 或 www.hilti.com.tw。

HIT-HY 200 R V3 化學藥劑搭配 HIT-Z 和 HIT-Z-R 螺桿

圖 1 — 喜利得 HIT-Z 和 HIT-Z-R 安裝條件

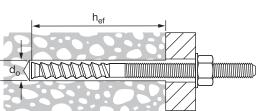
- 1 在以碳化鈉鑽頭鑽孔的孔洞中安裝錨栓時,可能無需清理孔洞中的粉塵。溫度必須至少5°C。如果溫度低於5°C,則必須清除孔洞中的粉塵。請參閱製造商發行的安裝說明(MPII)。
- 日 正文版に調明規則に印入中文を調査に行、別に派売用生口が中的が配。血反の原主ク3 C。 知来 2 温度低於5°C時,使用 TE-CD 或 TE-YD 空心錯韻結節。喜利得販産器為清除孔中粉塵的可行方法。 3 以鑽石鑽頭鑽孔時,必須以水管和壓縮空氣清理鑽孔。請參閱 MPII。

表 1 — 搭配 HIT-HY 200 R V3 化學藥劑安裝的HIT-Z 和 HIT-Z-R 規格

安裝資訊		符號	單位		標準錨	栓直徑	
女装貝部		1寸5版	単位	M10	M12	M16	M20
標準鑽頭直徑		d _o	mm	12	14	18	22
有效埋深	最小	h _{ef,min}	mm	60	70	95	102
有双连/木	最大	h _{ef,max}	mm	114	152	190	216
被固定物開孔直徑	穿透式安裝		mm	14	16	20	24
饭回足物用几旦淫	預置		mm	12	14	18	22
空壯切垢	HIT-Z	T _{inst}	Nm	20	40	80	150
安裝扭矩	HIT-Z-R	T _{inst}	Nm	40	90	170	220
1 使用(2) 対策定計 目图 2)						

¹ 使用 (2) 墊圈安裝。見圖 3。

圖 2 — 喜利得 HIT-Z 和 HIT-Z-R 規格



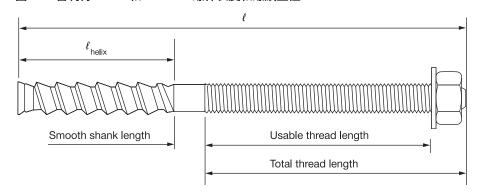

圖 3 — 使用 (2) 墊圈安裝

表 2 — 喜利得 HIT-Z 和 HIT-Z-R 螺桿長度和螺紋直徑

	ℓ 錨栓長度	ℓ 螺旋錐長度	平滑柄部長度	螺紋總長	Usable thread 可用螺紋長度	HIT-Z
尺寸	mm	mm	mm	mm	mm	長度碼
M10 x 85	85	57	6	21	8	D
M10 x 111	111	57	8	46	33	F
M10 x 130	130	57	8	65	52	Н
M10 x 162	162	57	8	97	84	J
M12 x 114	114	63	8	43	26	F
M12 x 165	165	63	8	94	77	J
M12 x 197	197	63	8	126	109	М
M16 x 152	152	92	11	49	28	I
M16 x 203	203	92	11	100	79	М
M16 x 241	241	92	49	100	79	Р
M20 x 165	165	102	8	51	26	K
M20 x 216	216	102	12	102	77	N
M20 x 248	248	102	44	102	77	Q

圖 4 — 喜利得 HIT-Z 和 HIT-Z-R 螺桿長度和螺紋直徑

錨栓緊固技術指引

表 3 — 對於在非開裂混凝土中使用喜利得 HIT-Z(-R) 螺桿,喜利得 HIT-HY 200 R V3 的設計強度與混凝土/拔出破壞 12.3.4.5.67.8.9.10

1			拉力 -	— ΦN _n			剪力 -	— ΦV _n	
標準錨栓 直徑 (mm)	有效埋深 (mm)	f'_{c} = 175 kgf/cm ² kgf (kN)	f'_{c} = 210 kgf/cm ² kgf (kN)	f'_{c} = 280 kgf/cm ² kgf (kN)	f'_{c} = 420 kgf/cm ² kgf (kN)	f'_{c} = 175 kgf/cm ² kgf (kN)	f'_{c} = 210 kgf/cm ² kgf (kN)	f'_{c} = 280 kgf/cm ² kgf (kN)	f'_{c} = 420 kgf/cm ² kgf (kN)
	60	1,295 (12.7)	1,417 (13.9)	1,637 (16.1)	2,007 (19.7)	3,075 (13.7)	1,529 (15.0)	1,764 (17.3)	2,161 (21.2)
M10	86	2,193 (21.5)	2,345 (23.0)	2,345 (23.0)	2,345 (23.0)	4,724 (46.3)	5,175 (50.8)	5,976 (58.6)	7,319 (71.8)
	114	2,345 (23.0)	2,345 (23.0)	2,345 (23.0)	2,345 (23.0)	7,273 (71.3)	7,970 (78.2)	9,201 (90.2)	11,270 (110.5)
	70	1,613 (15.8)	1,767 (17.3)	2,041 (20.0)	2,499 (24.5)	3,475 (34.1)	3,808 (37.3)	4,395 (43.1)	5,384 (52.8)
M12	114	3,377 (33.1)	3,454 (33.9)	3,454 (33.9)	3,454 (33.9)	7,273 (71.3)	7,970 (78.2)	9,201 (90.2)	11,270 (110.5)
	152	3,454 (33.9)	3,454 (33.9)	3,454 (33.9)	3,454 (33.9)	11,199 (109.8)	12,267 (120.3)	14,166 (138.9)	17,350 (170.1)
	95	2,570 (25.2)	2,815 (27.6)	3,250 (31.9)	3,980 (39.0)	5,534 (54.3)	6,062 (59.5)	6,999 (68.6)	8,573 (84.1)
M16	143	4,720 (46.3)	5,171 (50.7)	5,972 (58.6)	6,307 (61.9)	10,167 (99.7)	11,136 (109.2)	12,859 (126.1)	15,749 (154.4)
	191	6,307 (61.9)	6,307 (61.9)	6,307 (61.9)	6,307 (61.9)	15,651 (153.5)	17,146 (168.1)	19,799 (194.2)	15,749 (237.8)
	102	2,830 (27.8)	3,100 (30.4)	3,581 (35.1)	4,384 (43.0)	6,096 (59.8)	6,679 (65.5)	7,711 (75.6)	9,444 (92.6)
M20	171	6,205 (60.9)	6,797 (66.7)	7,849 (77.0)	8,391 (82.3)	13,363 (131.0)	14,640 (143.6)	16,903 (165.8)	20,704 (203.0)
	216	8,391 (82.3)	8,391 (82.3)	8,391 (82.3)	8,391 (82.3)	18,885 (185.2)	20,686 (202.9)	23,886 (234.2)	29,257 (286.9)

表 4 — 對於在開裂混凝土中使用喜利得 HIT-Z(-R) 螺桿, 喜利得 HIT-HY 200 R V3 的設計強度與混凝土/拔出破壞 12.3,45.67.8.9.10

1= X+ A++ 1 A			拉力 -	— ΦN _n			剪力 -	— ΦV _n		
標準錨栓 直徑 (mm)	有效埋深 (mm)	f'_{c} = 175 kgf/cm ² kgf (kN)	f'_{c} = 210 kgf/cm ² kgf (kN)	f'_{c} = 280 kgf/cm ² kgf (kN)	f'_{c} = 420 kgf/cm ² kgf (kN)	$f'_{c} = 175 \text{ kgf/cm}^2 \text{ kgf (kN)}$	f'_{c} = 210 kgf/cm ² kgf (kN)	f'_{c} = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	
	60	916 (9.0)	1,005 (9.9)	1,161 (11.4)	1,422 (13.9)	989 (9.7)	1,082 (10.6)	1,250 (12.3)	1,531 (15.0)	
M10	86	1,554 (15.2)	1,703 (16.7)	966 (19.3)	2,345 (23.0)	3,348 (32.8)	3,667 (36.0)	4,234 (41.5)	5,185 (50.8)	
	114	2,345 (23.0)	2,345 (23.0)	2,345 (23.0)	2,345 (23.0)	5,153 (50.5)	5,645 (55.4)	6,518 (63.9)	7,983 (78.3)	
	70	1,143 (11.2)	1,252 (12.3)	1,445 (14.2)	1,771 (17.4)	2,461 (24.1)	2,697 (26.4)	3,114 (30.5)	3,812 (37.4)	
M12	114	2,393 (23.5)	2,622 (25.7)	3,025 (29.7)	3,225 (31.6)	5,153 (50.5)	5,645 (55.4)	6,518 (63.9)	7,983 (78.3)	
	152	3,225 (31.6)	3,225 (31.6)	3,225 (31.6)	3,225 (31.6)	7,933 (77.8)	8,691 (85.2)	10,033 (98.4)	12,290 (120.5)	
	95	1,819 (17.8)	1,994 (19.5)	2,302 (22.6)	2,819 (27.6)	3,919 (38.4)	4,293 (42.1)	4,958 (48.6)	6,074 (59.6)	
M16	143	3,343 (32.8)	3,663 (35.9)	4,230 (41.5)	5,180 (50.8)	7,201 (70.6)	7,888 (77.4)	9,108 (89.3)	11,156 (109.4)	
	191	5,148 (50.5)	5,338 (55.3)	4,230 (61.9)	6,307 (61.9)	11,086 (108.7)	12,145 (119.1)	14,023 (137.5)	171,175 (168.4)	
	102	2,005 (19.7)	2,195 (21.5)	2,356 (24.9)	3,105 (30.4)	4,218 (42.3)	4,731 (46.4)	5,461 (53.6)	6,690 (65.6)	
M20	171	4,395 (43.1)	4,815 (47.2)	5,559 (54.5)	6,808 (66.8)	9,466 (92.8)	10,369 (101.7)	11,973 (117.4)	14,665 (143.8)	
	216	6,210 (60.9)	6,804 (66.7)	7,856 (77.0)	8,235 (80.8)	13,376 (131.2)	14,653 (143.7)	16,919 (165.9)	20,722 (203.2)	

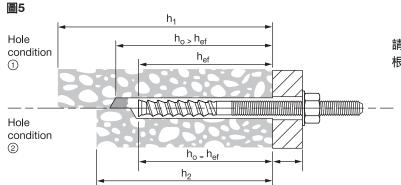
- 如需荷載值明確說明. 請參閱第 3.1.8 節。
- 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。
- 埋置深度和混凝土抗壓強度之間不允許使用線性內插法。
- 請視需要將表 10 至表 17 的間距、邊距及混凝土厚度係數套用至上述值。對比表 5 中的鋼材數值。將較小的值用於設計。
- 資料適用於溫度範圍 A:最高短期溫度 = 130°F (55°C)、最高長期溫度 = 110°F (43°C)。
- 對於溫度範圍 B:最高短期溫度 = 176°F (80°C)、最高長期溫度 = 110°F (43°C),將上方數值乘以 1.0。對於溫度範圍 C:最高短期溫度 = 248°F (120°C)、最高長期溫度 = 162°F (72°C),將上 方值乘以 0.90。
- 混凝土溫度的短期上升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土溫度會在相當長的一段時間內保持大致恆定。
- 表列值滴用於乾燥和水飽和混凝十條件。
- 表列值僅適用於短期荷載。如需了解長期荷載,請參閱第 3.1.8 節。8.
- 8 表列值僅個於舒度主量混凝土、 新於輕質混凝土、 將設計強度(係數阻力)如下所示乘以入:對於輕質砂混凝土、入。= 0.51;對於全輕質混凝土、入。 9 表列值僅適用於靜態荷載。非開裂混凝土不容許採用抗震設計。如需得出地震荷載,僅需將開裂混凝土的表列拉力值乘以下列
- 折減係數: = 0.705
- M10 $\alpha_{N,seis} = 0.705$ M12到M20 $\alpha_{N,seis} = 0.75$
- 如需抗震應用的其他資訊,請參閱第 3.1.8 節。
- 10 使用喜利得 HIT-Z(-R) 螺桿搭配鑽石鑽孔,無需折減上方公開資料。

表 5 — 喜利得 HIT-Z 和 HIT-Z-R 螺桿的鋼材設計強度 1,2

<u> </u>	140111						
		I	以ACI 318/土木 401	第 17 章為基礎的設計	t		
		HIT-Z 碳鋼螺桿			HIT-Z-R 不銹鋼螺桿		
標準錨栓直徑	拉力³	抗震剪力 ⁴	抗震剪力 ⁵	拉力³	抗震剪力 ⁴	抗震剪力 ^s	
(mm)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	
M10	2,155	875	569	2,155	1,193	943	
	(21.1)	(8.6)	(5.6)	(21.1)	(11.7)	(9.3)	
M12	3,944	1,601	1,041	3,944	2,184	1,637	
	(38.7)	(15.7)	(10.2)	(38.7)	(21.4)	(16.1)	
M16	6,282	2,551	1,658	6,282	3,479	2,261	
	(61.6)	(25.0)	(16.3)	(61.6)	(34.1)	(22.2)	
M20	9,278	3,769	2,449	9,278	5,139	3,341	
	(91.0)	(37.0)	(24.0)	(91.0)	(50.4)	(32.8)	

- 1 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。

- 1 前参阅第・3.1-8 即舟設訂 強度恒轉探码 ASD 恒。 2 HIT-Z 和 HIT-Z-R 螺桿需視為脆性鋼材構件。 1 拉力 = φ A_{SON} f_{in}, 如 ACI 318/ 土木 401 17.4.1.2 所述 2 剪力 = φ 0.60 A_{SON} f_{in} 如 ACI 318/ 土木 401 17.5.1.2b 所述。 3 抗震剪力 = α_{V,sels} φ V_{sn}: 僅適用於抗震剪力的折減。如需抗震應用的其他資訊,請參閱 ACI 318/土木 401。

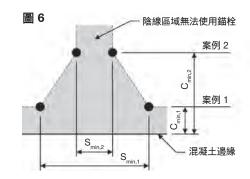

喜利得 HIT-Z(-R) 螺桿的容許邊距、錨栓間距和混凝土厚度組合

喜利得 HIT-Z 和 HIT-Z-R 螺桿在混凝土板上施加安裝扭力時,會產生較高的膨脹力。也就是說,與標準螺桿相較,安裝錨栓時的 邊距和間距必須加大,藉此最大程度地降低混凝土板在安裝過程中分裂的可能性。

容許邊距的依據為混凝土條件(開裂或非開裂)、混凝土厚度,以及錨栓間距(針對錨栓群組進行設計時)。適用混凝土厚度需視 錨栓安裝過程中是否有清除鑽孔粉塵而定。

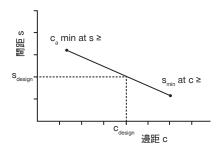
步驟 1:確認混凝土厚度

使用喜利得 HIT-Z 和 HIT-Z-R 螺桿時,如果基材溫度高於 41°F (5°C),且錘鑽使用碳化鎢鑽頭,則無需清除鑽孔粉塵即可得到最 佳承載力。不過,未清除粉塵時,混凝土厚度可能會減少。下圖說明這兩種鑽孔條件。**鑽孔條件 1** 所示為鑽孔粉塵留在孔洞時的 孔深和混凝土厚度。**鑽孔條件 2** 所示為使用壓縮空氣、喜利得 TE-CD 或 TE-YD 空心鑽頭搭配喜利得吸塵器清除粉塵後的對應折 減情形。



請參閱本節表 6 到 9 了解使用喜利得 HIT-Z(-R) 螺桿時, 根據直徑和鑽孔條件得出的最小混凝土厚度。

步驟 2:確認邊距和錨栓間距


本節表 6 到 9 所示為根據特定混凝土厚度,以及設計適用於開裂還是非開裂混凝土,得出的最小邊距和錨栓間距。每種嵌入方式 和混凝土條件(開裂或非開裂)都有兩種邊距和錨栓間距組合案例。案例 1 為一個錨栓或錨栓間距較大的兩個錨栓所需的最小邊 距。案例 2 為可用的最小錨栓間距,但為了避免分裂,邊距必須增加。案例 1 和案例 2 之間的任何混凝土厚度和混凝土條件之 下,都可以採用線性內插法。請參閱下圖和計算結果,可用於判斷特定的邊距和錨栓間距組合。

針對特定邊距,容許間距的計算方式 如下所示:

$$s \ge s_{\min,2} + \frac{(s_{\min,1} - s_{\min,2})}{(c_{\min,1} - c_{\min,2})} (c - c_{\min,2})$$

表 6 — M10 直徑的喜利得 HIT-Z 和 HIT-Z-R 螺桿的最小邊距、間距和混凝土厚度¹

標準銷	社	d	mm					M10				
有效均	深	h _{ef}	mm		60			86			114	
鑽孔修		-	-	2 ²	1 5	艾 2	2 ²	1 5		2 ²	1 5	或 2
最小涯	凝土厚度	h	mm	102	117	146	117	143	162	146	171	187
	最小邊緣和間距	C min,1	mm	79	70	57	70	57	51	57	48	48
非開裂混凝土	案例 1	S min,1	mm	232	197	156	197	165	143	156	137	114
非開裂	最小邊緣和間距	C min,2	mm	143	121	95	121	98	83	95	79	70
	案例 2	S min,2	mm	48	48	48	48	48	48	48	48	48
	最小邊緣和間距	C min,1	mm	54	48	48	48	48	48	48	48	48
開裂混凝土	案例 1	S min,1	mm	162	140	108	140	89	67	83	51	48
開製湯	最小邊緣和間距	C min,2	mm	92	79	60	79	64	54	60	51	48
	案例 2		mm	48	48	48	48	48	48	48	48	48

表 7 — M12 直徑的喜利得 HIT-Z 和 HIT-Z-R 螺桿的最小邊距、間距和混凝土厚度¹

標準銷	社 栓直徑	d	mm					M12				
有效坦	深	h _{ef}	mm		70			114			152	
鑽孔條	件	-	-	2 ²	1 5	艾 2	2 ²	1 5	艾 2	2 ²	1 5	艾 2
最小混	尼凝土厚度	h	mm	102	127	181	146	171	210	184	210	248
	最小邊緣和間距	C _{min,1}	mm	130	105	73	92	76	64	73	64	64
非開裂混凝土	案例 1	S min,1	mm	378	302	219	260	229	184	206	184	127
非開製	最小邊緣和間距	C min,2	mm	235	184	124	159	133	105	121	105	86
	案例 2	S min,2	mm	64	64	64	64	64	64	64	64	64
	最小邊緣和間距	C min,1	mm	92	76	64	67	64	64	64	64	64
開裂混凝土	案例 1	S min,1	mm	276	216	152	187	140	79	114	79	64
開製源	最小邊緣和間距	C _{min,2}	mm	165	127	83	108	89	70	83	70	64
	案例 2		mm	64	64	64	64	64	64	64	64	64

1 案例 1 和案例 2 之間允許使用線性內插法建立邊距和間距組合。 當 $c_{min,1} < c < c_{min,2}$ 時,測定的容許間距 s 如下:

$$s \ge s_{\min,2} + \frac{(s_{\min,1} - s_{\min,2})}{(c_{\min,1} - c_{\min,2})} (c - c_{\min,2})$$

2 陰影線格代表鑽孔中的粉塵必須清除,其最小混凝土厚度才可用。

表 8 — M16 直徑的喜利得 HIT-Z 和 HIT-Z-R 螺桿的最小邊距、間距和混凝土厚度¹

標準錯	栓直徑	d	mm					M16				
有效埋	深	h _{ef}	mm		95			143			191	
鑚孔條	件	-	-	2 ²	1 👨	艾 2	2 ²	1 5	艾 2	2 ²	1 3	艾 2
最小混	凝土厚度	h	mm	140	197	238	187	244	267	235	292	311
	最小邊緣和間距	C min,1	mm	159	114	95	117	92	83	95	79	79
非開裂混凝土	案例 1	S min,1	mm	467	327	270	352	264	248	276	213	187
非開發	最小邊緣和間距	C min,2	mm	289	197	159	210	156	140	162	124	117
	案例 2 	S min,2	mm	79	79	79	79	79	79	79	79	79
	最小邊緣和間距	C min,1	mm	117	86	79	89	79	79	79	79	79
開裂混凝土	案例 1	S min,1	mm	352	241	222	257	165	137	181	98	79
開製源	最小邊緣和間距	C min,2	mm	210	140	111	149	108	98	114	86	79
	案例 2	S min,2	mm	79	79	79	79	79	79	79	79	79

表 9 — M20 直徑的喜利得 HIT-Z 和 HIT-Z-R 螺桿的最小邊距、間距和混凝土厚度¹

標準錨		d	mm					M20				
有效均	型深	h _{ef}	mm		102			171			216	
鑽孔條		-	-	2 ²	1 5	戉 2	2 ²	1 5	艾 2	2 ²	1 👨	艾 2
最小混	尼凝土厚度	h	mm	146	203	292	216	273	333	260	318	368
Ш	最小邊緣和間距	C min,1	mm	248	178	127	168	133	108	140	114	102
泥凝二	案例 1	S min,1	mm	730	524	356	492	387	321	406	337	279
非開裂混凝土	最小邊緣和間距	C min,2	mm	460	321	216	302	232	184	244	197	165
	案例 2	S min,2	mm	95	95	95	95	95	95	95	95	95
	最小邊緣和間距	C min,1	mm	184	133	105	127	102	95	105	95	95
開裂混凝土	案例 1	S min,1	mm	552	394	311	368	289	229	308	222	165
開發源	最小邊緣和間距	C min,2	mm	337	235	152	219	168	130	178	140	114
	案例 2	S min,2	mm	95	95	95	95	95	95	95	95	95

¹ 案例 1 和案例 2 之間允許使用線性內插法建立邊距和間距組合。 當 $c_{min,1} < c < c_{min,2}$ 時,測定的容許間距 s 如下:

$$s \ge s_{\min,2} + \frac{(s_{\min,1} - s_{\min,2})}{(c_{\min,1} - c_{\min,2})} (c - c_{\min,2})$$

2 陰影線格代表鑽孔中的粉塵必須清除,其最小混凝土厚度才可用。

喜利得 HIT-HY 200 R V3 化學藥劑搭配竹節鋼筋

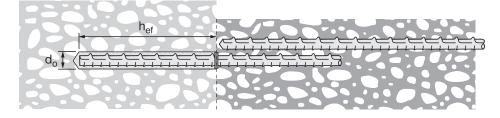
圖 7 - 鋼筋安裝條件

非開裂混凝土

乾混凝土

水飽和混凝土

含水孔洞


適用鑽孔方式

喜利得 TE-CD 或 TE-YD 空 心鑽頭

圖 8 - 使用喜利得 HIT-HY 200 R V3 化學藥劑安裝鋼筋

開裂混凝土

表 10 - 使用 HIT-HY 200 R V3 化學藥劑安裝鋼筋的規格

安裝資訊		符號	單位				鋼筋	尺寸				
艾 表貝矶		1寸5流	1 年12	3	4	5	6	7	8	9	10	
標準鑽頭直徑	d _o	mm	12.7	16	19	25	28	32	36	40		
有效埋深有效埋深	最小	h _{ef,min}	mm	60	70	79	89	89	102	114	127	
有X/生/木有X/生/木	最大	h _{ef,max}	mm	191	254	318	381	445	508	572	635	
最小混凝土厚度		h _{min}	mm	h _{ef} -	+ 30			h _{ef} +	2d _o			
最小邊距1		C _{min}	mm	48	64	79	95	111	127	143	159	
最小錨栓間距	最小錨栓間距		mm	48	64	79	95	111	127	143	159	

¹ 允許 1-3/4 英吋(44 mm)的邊距,前提是鋼筋保持無施加扭力。

備註:ACI 318/ 土木 401 第 17 章規定。如需了解如何根據 ACI 318/ 土木 401 第 25 章(原 ACI 318/ 土木 401-11 第 12 章)的典型發展計算,使用喜利得 HIT-HY 200 R V3 搭配鋼筋,請參閱第 3.1.14 節 (2019 PTG) 的設計方式,以及本文件結尾的表 89 至表 93。

表 11 — 對於在非開裂混凝土中安裝的鋼筋,喜利得 HIT-HY 200 R V3 化學藥劑的設計強度與混凝土/粘結破壞混凝土1,2,3,4,5,6,7,8,9

			拉力 -	– φN ₂		剪力 — φV _n				
细丝口士	有效埋深	f' = 175 kgf/cm ² kgf (kN)			$f'_{c} = 420 \text{ kgf/cm}^2$	$f'_{c} = 175 \text{ kgf/cm}^2$	$f'_{c} = 210 \text{ kgf/cm}^2$	$f'_{c} = 280 \text{ kgf/cm}^2$	$f'_{c} = 420 \text{ kgf/cm}$	
鋼筋尺寸	(mm)									
	86	1,828	1,862	1,916	1,996	3,939	4,012	4,128	4,300	
		(17.9)	(18.3)	(18.8)	(19.6)	(38.6)	(39.3)	(40.5)	(42.2)	
#3	114	2,438	2,483	2,566	2,660	5,253	5,348	5,504	5,733	
		(23.9)	(24.4)	(25.1)	(26.1)	(51.5)	(52.4)	(54.0)	(56.2)	
	191	4,064	4,139	4,259	4,436	8,752	8,913	9,174	9,555	
	_	(39.9)	(40.6)	(41.8)	(43.5)	(85.8)	(87.4)	(90.0)	(93.7)	
	114	3,252	3,311	3,406	3,549	7,003	7,130	7,339	7,643	
		(31.9)	(32.5)	(33.4)	(34.8)	(68.7)	(69.9)	(72.0)	(75.0)	
#4	152	4,334	4,415	4,543	4,731	9,337	9,507	9,786	10,190	
		(42.5)	(43.3)	(44.5)	(46.4)	(91.6)	(93.2)	(96.0)	(99.9)	
	254	7,226	7,357	7,573	7,886	15,560	15,846	16,309	16,985	
	204	(70.9)	(72.1)	(74.3)	(77.3)	(152.6)	(155.4)	(159.9)	(166.6)	
	143	4,720	5,171	5,325	5,545	10,167	11,136	11,467	11,943	
	140	(46.3)	(50.7)	(52.2)	(54.4)	(99.7)	(109.2)	(112.5)	(117.1)	
#5	191	6,772	6,897	7,099	7,394	14,588	14,857	15,291	15,923	
#5	131	(66.4)	(67.6)	(69.6)	(72.5)	(143.1)	(145.7)	(149.9)	(156.2)	
	318	11,288	11,496	11,832	12,322	24,315	24,762	25,485	26,540	
	310	(110.7)	(112.7)	(116.0)	(120.8)	(238.4)	(242.8)	(249.9)	(260.3)	
	171	6,205	6,797	7,668	7,983	13,363	14,640	16,513	17,198	
	171	(60.9)	(66.7)	(75.2)	(78.3)	(131.0)	(143.6)	(161.9)	(168.7)	
""	000	9,553	9,934	10,222	10,646	20,575	21,394	22,017	22,929	
#6	229	(93.7)	(97.4)	(100.2)	(104.4)	(201.8)	(209.8)	(215.9)	(224.9)	
	201	16,257	16,554	17,037	17,742	35,013	35,657	36,698	38,215	
	381	(159.4)	(162.3)	(167.1)	(174.0)	(343.4)	(349.7)	(359.9)	(374.8)	
	000	7,818	8,566	9,891	10,868	16,840	18,448	21,301	23,408	
	200	(76.7)	(84.0)	(97.0)	(106.6)	(165.1)	(180.9)	(208.9)	(229.5)	
" 7	007	12,038	13,186	13,914	14,490	25,927	28,402	29,969	31,209	
#7	267	(118.1)	(129.3)	(136.4)	(142.1)	(254.3)	(278.5)	(293.9)	(306.1)	
	4.45	22,126	22,535	23,190	24,149	47,657	48,532	49,950	52,016	
	445	(217.0)	(221.0)	(227.4)	(236.8)	(467.4)	(475.9)	(489.8)	(510.1)	
	000	9,553	10,464	10,284	14,195	20,575	22,539	26,025	30,572	
	229	(93.7)	(102.6)	(118.5)	(139.2)	(201.8)	(221.0)	(255.2)	(299.8)	
".0	225	14,708	16,112	18,173	18,926	31,677	34,700	39,143	40,764	
#8	305	(144.2)	(158.0)	(178.2)	(185.6)	(310.6)	(340.3)	(383.9)	(399.8)	
	500	28,898	29,431	30,289	31,543	62,244	63,390	65,240	67,939	
	508	(283.4)	(288.6)	(297.0)	(309.3)	(610.4)	(621.6)	(639.8)	(666.3)	
	057	11,399	12,487	9,882	17,658	24,551	26,893	31,055	38,034	
	257	(111.8)	(122.5)	(141.4)	(173.2)	(240.8)	(263.7)	(304.5)	(373.0)	
		17,549	19,223	22,199	23,952	37,798	41,406	47,811	51,592	
#9	343	(172.1)	(188.5)	(217.7)	(234.9)	(370.7)	(406.1)	(468.9)	(505.9)	
		36,575	37,249	38,335	39,921	78,778	80,227	82,570	85,985	
	572	(358.7)	(365.3)	(375.9)	(391.5)	(772.5)	(786.8)	(809.7)	(843.2)	
	_	13,349	14,624	16,887	20,682	28,755	31,500	34,371	44,545	
	286	(130.9)	(143.4)	(165.6)	(202.8)	(282.0)	(308.9)	(356.7)	(436.8)	
		20,555	22,516	26,000	29,572	44,271	48,496	55,998	63,693	
#10	381	(201.6)	(220.8)	(255.0)	(290.0)	(434.1)	(475.6)	(549.2)	(624.6)	
		44,225	45,985	47,328	49,285	95,254	99,046	101,936	106,154	
	635	(433.7)	(451.0)		(483.3)		(971.3)	(999.6)	(1041.0)	
	033	(433.7)	(451.0)	(464.1)	(40 3. 3)	(934.1)	(971.3)	(७.५५)	(1041.0)	

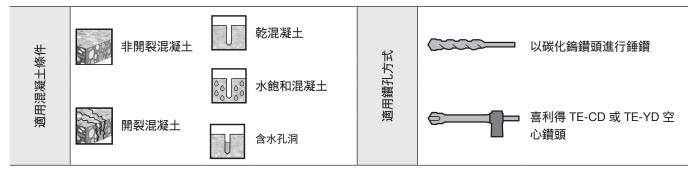
錨栓緊固技術指引

表 12 — 對於在開烈混凝十中安裝的鋼筋。 夏利得 HIT-HY 200 R V3 化學藥劑的設計強度相混凝十/熟結矿壞1.2.3.4.5.6.7.8.9

12 一 主] 小	(江州农/比/处	工中女装的剩	切, 各们待 「	111-H 1 200 K	♥3 化字樂剤	的設計強度與	以形规工/ 夠給	吸壞",=,o,+,o,o,		
			拉力 -	— φN _n		剪力 — φV _n				
鋼筋尺寸	有效埋深 (mm)	kgf (kN)	f'_{c} = 210 kgf/cm ² kgf (kN)	f'_{c} = 280 kgf/cm ² kgf (kN)	kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f'_{c} = 280 kgf/cm ² kgf (kN)	kgf (kN)	
	86	1,266	1,290	1,327	1,381	2,726	2,776	2,858	2,976	
	00	(12.4)	(12.7)	(13.0)	(13.5)	(26.7)	(27.2)	(28.0)	(29.2)	
#3	114	1,687	1,719	1,769	1,842	3,636	3,704	3,810	3,969	
#3	114	(16.5)	(16.9)	(17.3)	(18.1)	(35.7)	(36.3)	(37.4)	(38.9)	
	191	2,815	2,864	2,948	3,071	6,060	6,171	6,353	6,613	
	191	(27.6)	(28.1)	(28.9)	(30.1)	(59.4)	(60.5)	(62.3)	(64.9)	
	114	2,250	2,293	2,359	2,456	4,849	4,937	5,080	5,291	
	114	(22.1)	(22.5)	(23.1)	(24.1)	(47.6)	(48.4)	(49.8)	(51.9)	
<i>u</i> 4	150	3,001	3,057	3,146	3,275	6,464	6,582	6,774	7,056	
#4	152	(29.4)	(30.0)	(30.8)	(32.1)	(63.4)	(64.5)	(66.4)	(69.2)	
	054	5,001	5,094	5,244	5,459	10,773	10,970	11,292	11,759	
	254	(49.0)	(50.0)	(51.4)	(53.5)	(105.6)	(107.6)	(110.7)	(115.3)	
	4.40	3,343	3,615	3,719	3,874	7,201	7,786	8,013	8,344	
	143	(32.8)	(35.5)	(36.5)	(38.0)	(70.6)	(76.4)	(78.6)	(81.8)	
	404	4,733	4,819	4,960	5,166	10,192	10,380	10,684	11,127	
#5	191	(46.4)	(47.3)	(48.6)	(50.7)	(100.0)	(101.8)	(104.8)	(109.1)	
	0.10	7,888	8,033	8,267	8,609	16,989	17,302	17,806	18,543	
	318	(77.4)	(78.8)	(81.1)	(84.4)	(166.6)	(169.7)	(174.6)	(181.8)	
		4,395	4,815	5,357	5,579	9,466	10,369	11,539	12,016	
	171	(43.1)	(47.2)	(52.5)	(54.7)	(92.8)	(101.7)	(113.2)	(117.8)	
		6,768	6,940	7,142	7,439	14,574	14,948	15,384	16,021	
#6	229	(66.4)	(68.1)	(70.0)	(73.0)	(142.9)	(146.6)	(150.9)	(157.1)	
		11,358	11,567	11,905	12,397	24,464	24,914	25,642	26,703	
	381	(111.4)	(113.4)	(116.7)	(121.6)	(239.9)	(244.3)	(251.5)	(261.9)	
		5,330	5,427	5,586	5,817	11,478	11,689	12,032	12,528	
	200	(52.3)	(53.2)	(54.8)	(57.0)	(112.6)	(114.6)	(118.0)	(122.9)	
		7,106	7,237	7,448	7,756	15,304	15,585	16,041	16,706	
#7	267	(69.7)	(71.0)	(73.0)	(76.1)	(150.1)	(152.8)	(157.3)	(163.8)	
		11,843	12,061	12,413	12,927	25,508	25,977	26,735	27,841	
	445	(116.1)	(118.3)	(121.7)	(126.8)	(250.1)	(254.7)	(262.2)	(273.0)	
		6,768	7,130	7,339	7,643	14,574	15,359	15,808	16,463	
	229	(66.4)	(69.9)	(72.0)	(75.0)	(142.9)	(150.6)	(155.0)	(161.4)	
		9,337	9,507	9,786	10,190	20,110	20,480	21,078	21,949	
#8	305	(91.6)	(93.2)	(96.0)	(99.9)	(197.2)	(200.8)	(206.7)	(215.2)	
		15,560	15,846	16,309	16,985	33,516	34,133	35,128	36,582	
	508	(152.6)	(155.4)	(159.9)	(166.6)	(328.7)	(334.7)	(344.5)	(358.7)	
		8,074	8,845	9,398	9,789	17,391	19,051	20,246	21,083	
	257	(79.2)	(86.7)	(92.2)	(96.0)	(170.5)	(186.8)	(198.5)	(206.8)	
		11,957	12,177	12,533	13,052	25,755	26,229	26,993	28,111	
#9	343	(117.3)	(119.4)	(122.9)	(128.0)	(252.6)	(257.2)	(264.7)	(275.7)	
		19,929	20,296	20,888	21,752	42,923	43,713	44,990	46,852	
	572	(195.4)	(199.0)	(204.8)	(213.3)	(420.9)	(428.7)	(441.2)	(459.5)	
		9,457	10,360	11,605	12,084	20,369	22,312	24,995	26,029	
	286	(92.7)	(101.6)	(113.8)	(118.5)	(199.7)	(218.8)	(245.1)	(255.3)	
		14,558	15,034	15,472	16,114	31,359	32,380	33,325	34,704	
#10	381	(142.8)	(147.4)	(151.7)	(158.0)	(307.5)	(317.5)	(326.8)	(340.3)	
		24,603	25,056	25,787	26,855	52,993	53,968	55,542	57,840	

表 13 — 鋼筋的鋼材設計強度1,2

	SD280-CNS560 ASTM A615 Grade 40 ⁴			AST	M A615 Grade	e 60 ⁴	SD420-CNS560 ASTM A706 Grade 60 ⁴		
鋼筋尺寸	拉力³	剪力⁴	地震⁵ 剪力	拉力³	剪力⁴	地震⁵ 剪力	拉力³	剪力⁴	地震 ⁵ 剪力
	pN _{sa}	φV _{sa}	φV _{sa,eq}	φN _{sa}	φV _{sa}	φV _{sa,eq}	φN _{sa}	φV _{sa}	φV _{sa,eq}
	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)
#3	1,946	1,077	755	2,595	1,438	1,007	2,994	1,556	1,089
	(19.1)	(10.6)	(7.4)	(25.4)	(14.1)	(9.9)	(29.4)	(15.3)	(10.7)
#4	3,538	1,960	1,372	4,717	2,613	1,828	5,443	2,830	1,982
	(34.7)	(19.2)	(13.4)	(46.3)	(25.6)	(17.9)	(53.4)	(27.8)	(19.5)
#5	5,484	3,037	2,125	7,312	4,051	2,835	8,437	4,386	3,071
	(53.8)	(29.8)	(20.9)	(71.7)	(39.7)	(27.8)	(82.7)	(43.0)	(30.1)
#6	7,784	4,311	3,019	10,378	5,747	4,023	11,975	6,228	4,359
	(76.3)	(42.3)	(29.6)	(101.8)	(56.4)	(39.5)	(117.4)	(61.1)	(42.8)
#7	10,614	5,879	4,114	14,152	7,838	5,486	16,329	8,491	5,944
	(104.1)	(57.6)	(40.3)	(138.8)	(76.9)	(53.8)	(160.1)	(83.3)	(58.3)
#8	13,975	7,741	5,418	18,634	10,319	7,223	21,500	11,181	7,827
	(137.0)	(75.9)	(53.1)	(182.7)	(101.2)	(70.8)	(210.8)	(109.6)	(76.7)
#9	17,690	9,798	6,858	23,587	13,063	9,144	27,216	14,152	9,906
	(173.5)	(96.1)	(67.3)	(231.3)	(128.1)	(89.7)	(266.9)	(138.8)	(97.2)
#10	22,466	12,442	8,709	29,955	16,590	11,614	34,564	17,974	12,583
	(220.3)	(122.0)	(85.4)	(293.8)	(162.7)	(113.9)	(339.0)	(176.3)	(123.4)


- 1 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。
 2 ASTM A706 等級 60 的鋼筋可視為韌性鋼構件。ASTM A 615 等級 40 和 60 鋼筋可視為脆性鋼構件。
 3 張力 = φN_{ss} = φ A_{ssN} f_{uta}, 如 ACI 318/ CIVIL 401 第 17 章所述。
 4 剪力值由使用 φV_{ss} < φ 0.60 A_{ssN} f_{uta} 的靜態剪力測試判定,如 ACI 318/ CIVIL 401 第 17 章所述。
 5 地震剪力值由使用 φV_{ss} < φ 0.60 A_{ssN} f_{uta} 的地震剪力測試判定,如 ACI 318/ CIVIL 401 第 17 章所述。有關地震應用的其他資訊,請參閱第 3.1.8 節。

HIT-HY 200 R V3 化學藥劑搭配 HAS-U-T(R2) 螺桿

圖 9 - 喜利得 HAS-U-T(R2) 螺桿安裝條件

表 14 - 喜利得 HAS-U-T(R2) 螺桿規格

安裝資訊		符號	單位		蝮	棵直徑 ,	d	
女表貝爪		1寸5元	単位	10	12	16	20	24
標準鑽頭直徑		d _o	mm	12	14	18	22	28
有效埋深	最小	h _{ef,min}	mm	60	70	79	89	89
有双连/木	最大	h _{ef,max}	mm	191	254	318	381	445
直徑 of fixture hole	穿透式安裝		mm	14	16	20	24	30
直徑 of fixture hole	預置		mm	12	14	18	20	24
安裝扭矩		T _{inst}	Nm	20	40	80	136	169
最小混凝土厚度		h _{min}	mm	h _{ef} -	+30		h _{ef} +2d _o	
最小邊距		C _{min}	mm	45	45	50 ²	55 ²	60 ²
最小錨栓間距		S _{min}	mm	48	64	79	95	111

- 1 使用 (2) 墊圈安裝。見圖 11。
- 2 允許 1-3/4 英时(44 mm)的邊距,前提是安裝扭矩減少至 0.30 T_{inst} (5d < s < 16-in) 以及縮減至 0.5 T_{inst} (s > 16-in)。

圖 10 - 喜利得 HAS-U-T(-R2) 螺桿

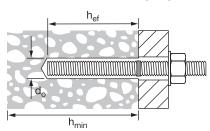


圖 11 — 使用 (2) 墊圈安裝

表 15 — 對於在開裂混凝土中安裝的鋼筋,喜利得 HIT-HY 200 R V3 化學藥劑的設計強度與混凝土/粘結破壞1,2,3,4,5,6,7,8,9

			拉力 -	* "				— φV _n	
票準錨栓直徑	有效埋深	$f'_{0} = 175 \text{ kgf/cm}^{2}$	$f'_{0} = 210 \text{ kgf/cm}^{2}$	$f'_{0} = 280 \text{ kgf/cm}^{2}$	$f'_{0} = 420 \text{ kgf/cm}^{2}$	$f'_{0} = 175 \text{ kgf/cm}^{2}$	$f'_{0} = 210 \text{ kgf/cm}^{2}$	f' = 280 kgf/cm ²	f' = 420 kgf/cm ²
(mm)	(mm)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)
	60	1,295	1,417	1,637	1,998	1,395	1,529	1,764	2,152
-		(12.7)	(13.9)	(16.1)	(19.6)	(13.7)	(15.0)	(17.3)	(21.1)
	86	2,193	2,404	2,728	2,839	4,724	5,175	5,874	6,119
M10		(21.5)	(23.6)	(26.8)	(27.8)	(46.3)	(50.8)	(57.6)	(60.0)
	114	3,377	3,533	3,638	3,787	7,273	7,611	7,834	8,158
L	• • • • • • • • • • • • • • • • • • • •	(33.1)	(34.7)	(35.7)	(37.1)	(71.3)	(74.6)	(76.8)	(80.0)
	191	5,783	5,890	6,062	6,312	12,456	12,685	13,057	13,596
	101	(56.7)	(57.8)	(59.5)	(61.9)	(122.1)	(124.4)	(128.0)	(133.3)
	70	1,613	1,767	2,041	2,499	3,475	3,808	4,395	5,384
L		(15.8)	(17.3)	(20.0)	(24.5)	(34.1)	(37.3)	(43.1)	(52.8)
	114	3,377	3,699	4,273	5,051	7,273	7,970	9,201	10,877
M12	114	(33.1)	(36.3)	(41.9)	(49.5)	(71.3)	(78.2)	(90.2)	(106.7)
10112	152	5,200	5,697	6,466	6,734	11,199	12,267	13,925	31,970
L	102	(51.0)	(55.9)	(63.4)	(66.0)	(109.8)	(120.3)	(136.6)	(142.2)
	254	10,281	10,471	10,775	11,222	22,144	22,553	23,210	24,170
	254	(100.8)	(102.7)	(105.7)	(110.0)	(217.2)	(221.2)	(227.6)	(237.0)
	79	1,955	2,141	2,472	3,028	4,209	4,611	5,325	6,523
L	19	(19.2)	(21.0)	(24.2)	(29.7)	(41.3)	(45.2)	(52.2)	(64.0)
	143	4,720	5,171	5,972	7,312	10,167	11,136	12,859	15,749
M16	143	(46.3)	(50.7)	(58.6)	(71.7)	(99.7)	(109.2)	(126.1)	(154.4)
IVITO	191	7,267	7,961	9,192	10,521	15,651	17,146	19,799	22,659
L		(71.3)	(78.1)	(90.1)	(103.2)	(153.5)	(168.1)	(194.2)	(222.2)
	318	15,635	16,361	16,837	17,534	33,677	35,237	36,267	37,766
	310	(153.3)	(160.4)	(165.1)	(171.9)	(330.3)	(345.6)	(355.7)	(370.4)
	89	2,316	2,538	2,930	3,588	4,990	5,466	6,312	7,729
	09	(22.7)	(24.9)	(28.7)	(35.2)	(48.9)	(53.6)	(61.9)	(75.8)
	171	6,205	6,797	7,849	9,612	13,363	14,640	16,903	20,704
M20	171	(60.9)	(66.7)	(77.0)	(94.3)	(131.0)	(143.6)	(165.8)	(203.0)
IVIZU	229	9,553	10,464	12,084	14,798	20,575	22,539	26,025	31,874
	229	(93.7)	(102.6)	(118.5)	(145.1)	(201.8)	(221.0)	(255.2)	(312.6)
	381	20,555	22,516	24,247	25,249	44,271	48,496	52,222	54,383
	301	(201.6)	(220.8)	(237.8)	(247.6)	(434.1)	(475.6)	(512.1)	(533.3)
	102	2,801	3,068	3,543	4,339	6,033	6,609	7,631	9,347
L	102	(27.5)	(30.1)	(34.7)	(42.6)	(59.2)	(64.8)	(74.8)	(91.7)
	229	9,423	10,322	11,919	14,598	20,296	22,233	25,672	31,442
M24	223	(92.4)	(101.2)	(116.9)	(143.2)	(199.0)	(218.0)	(251.8)	(308.3)
	205	14,484	15,866	18,321	22,438	31,196	34,173	39,460	48,328
	305	(142.0)	(155.6)	(179.7)	(220.0)	(305.9)	(335.1)	(387.0)	(473.9)
Γ	400	28,595	31,325	36,170	40,042	61,590	67,468	77,906	86,245
į	480	(280.4)	(307.2)	(354.7)	(392.7)	(604.0)	(661.6)	(764.0)	(845.8)

- 1 如需荷載值發展說明,請參閱第 3.1.8 節。
 2 請參閱第 3.1.8 節。
 3 排參閱第 3.1.8 節將設計強度(係數阻力)值轉換為 ASD 值。
 3 埋置深度和混凝土抗壓強度之間不允許使用線性內插法。
 4 請視需要將表 42 至表 55 的問距,邊距及混凝土厚度係數套用至上述值。對比表 41 中的鋼材數值。將較小的值用於設計。
 5 資料適用於溫度範圍 A:最高短期溫度 = 130° F (65° C)、最高長期溫度 = 110° F (43° C)。
 對於溫度範圍 B: 最高短期溫度 = 176° F (80° C)、最高長期溫度 = 110° F (43° C),將上方數值乘以 0.92。對於溫度範圍 B: 最高短期溫度 = 248° F (120° C)、最高長期溫度 = 162° F (72° C),將上方值乘以 0.78。
 長期混凝土溫度會在相當長的一段時間內保持大致恆定。
 6 表列值適用於於過和水線和洱海半十條件。

- 長期混凝工温度曾任怕昌長的一段時间內保持入致恆足。 6 表列值適用於乾燥和水飽和混凝土條件。 7 表列值僅適用於短期荷載。如需了解長期荷載的數值,包括高架用途,請參閱第 3.1.8 節。 8 表列值僅限於額定重量混凝土。對於輕質混凝土,將設計強度(係數阻力)如下所示乘以 λ_a:對於輕質砂混凝土,λ_a = 0.51;對於全輕質混凝土,λ_a = 0.45。 9 表列值僅適用於靜態荷載。非開裂混凝土不容許採用抗震設計。

錨栓緊固技術指引

表 16 — 對於在開裂混凝土中安裝的螺桿,喜利得 HIT-HY 200 R V3 化學藥劑的設計強度與混凝土/黏結破壞1,2,3,4,5,6,7,8,9

				— фN _n				— φV _n	
標準錨栓直		$f'_{0} = 175 \text{ kgf/cm}^{2}$	$f'_{c} = 210 \text{ kgf/cm}^{2}$	f' = 280 kgf/cm ²	$f'_{0} = 420 \text{ kgf/cm}^{2}$	$f'_{0} = 175 \text{ kgf/cm}^{2}$	$f'_{c} = 210 \text{ kgf/cm}^2$	f'_{c} = 280 kgf/cm ² kgf (kN)	$f'_{0} = 420 \text{ kgf/cm}^{2}$
徑 (mm)	有效埋深 (mm)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)
	60	862	878	903	941	928	946	973	1,014
	00	(8.5)	(8.6)	(8.9)	(9.2)	(9.1)	(9.3) 2,688	(9.5)	(9.9)
	86	1,225	1,247	1,284	1,338	2,638		2,765	2,880
M10	00	(12.0)	(12.2)	(12.6)	(13.1)	(25.9)	(26.4)	(27.1)	(28.2)
IVI I U	114	1,633	1,662	1,712	1,783	3,518	3,583	3,688	3,840
	114	(16.0)	(16.3)	(16.8)	(17.5)	(34.5)	(35.1)	(36.2)	(37.7)
	191	2,722	2,771	2,853	2,971	5,863	5,972	6,146	6,400
	191	(26.7)	(27.2)	(28.0)	(29.1)	(57.5)	(58.6)	(60.3)	(62.8)
	70	1,143	1,252	1,445	1,579	2,461	2,697	3,114	3,397
	70	(11.2)	(12.3)	(14.2)	(15.5)	(24.1)	(26.4)	(30.5)	(33.3)
	114	2,365	2,409	2,479	2,581	5,094	5,189	5,339	5,561
M12	114	(23.2)	(23.6)	(24.3)	(25.3)	(50.0)	(50.9)	(52.4)	(54.5)
IVIIZ	152	3,155	3,211	3,307	3,443	6,793	6,917	7,119	7,414
	132	(30.9)	(31.5)	(32.4)	(33.8)	(66.6)	(67.8)	(69.8)	(72.7)
	254	5,257	5,352	5,509	5,738	11,322	11,530	11,866	12,358
	204	(51.6)	(52.5)	(54.0)	(56.3)	(111.0)	(113.1)	(116.4)	(121.2)
	79	1,383	1,517	1,751	2,145	2,982	3,266	3,772	4,620
-	19	(13.6)	(14.9)	(17.2)	(21.0)	(29.2)	(32.0)	(37.0)	(45.3)
	143	3,343	3,663	3,994	4,159	7,201	7,888	8,600	8,956
M16	143	(32.8)	(35.9)	(39.2)	(40.8)	(70.6)	(77.4)	(84.3)	(87.8)
IVITO	191	5,080	5,173	5,325	5,545	10,941	11,142	11,467	11,943
	191	(49.8)	(50.7)	(52.2)	(54.4)	(107.3)	(109.3)	(112.5)	(117.1)
	318	8,466	8,623	8,875	9,242	18,237	18,570	19,112	19,904
	310	(83.0)	(84.6)	(87.0)	(90.6)	(178.8)	(182.1)	(187.4)	(195.2)
	89	1,642	1,798	2,075	2,542	3,533	3,871	4,470	5,475
	09	(16.1)	(17.6)	(20.4)	(24.9)	(34.7)	(38.0)	(43.8)	(53.7)
	171	4,395	4,815	5,559	6,448	9,466	10,369	11,973	13,889
M20	171	(43.1)	(47.2)	(54.5)	(63.2)	(92.8)	(101.7)	(117.4)	(136.2)
IVIZO	229	6,768	7,412	8,258	8,598	14,574	15,964	17,783	18,520
	223	(66.4)	(72.7)	(81.0)	(84.3)	(142.9)	(156.6)	(174.4)	(181.6)
	381	13,129	13,372	13,762	14,331	28,279	28,799	29,640	30,867
	001	(128.8)	(131.1)	(135.0)	(140.5)	(277.3)	(282.4)	(290.7)	(302.7)
	102	1,985	2,173	2,511	3,074	4,275	4,684	5,407	6,624
	102	(19.5)	(21.3)	(24.6)	(30.1)	(41.9)	(45.9)	(53.0)	(65.0)
	229	6,701	7,339	8,474	10,379	14,430	15,806	18,251	22,354
M24	223	(65.7)	(72.0)	(83.1)	(101.8)	(141.5)	(155.0)	(179.0)	(219.2)
1417-4	305	10,314	11,299	13,047	15,916	22,215	24,337	28,080	34,280
	000	(101.1)	(110.8)	(127.9)	(156.1)	(217.9)	(238.7)	(275.4)	(336.2)
	480	20,303	21,977	22,618	23,554	43,729	47,335	48,716	50,732
	400	(199.1)	(215.5)	(221.8)	(231.0)	(428.8)	(464.2)	(477.7)	(497.5)

- 1 如需荷載値發展說明,請參閱第 3.1.8 節。
 2 請參閱第 3.1.8 節。
 2 請參閱第 3.1.8 節將設計強度(係數阻力)值轉換為 ASD 值。
 3 埋置深度和混凝土抗壓強度之間不允許使用線性內括法。
 4 講視需要將表 42 至表 55 的問距、邊距及混凝土厚度係數套用至上述值。對比表 41 中的鋼材數值。將較小的值用於設計。
 5 資料適用於溫度範圍 A:最高短期溫度 = 130° F (55° C)、最高長期溫度 = 110° F (43° C)。
 對於溫度範圍 B::最高短期溫度 = 176° F (80° C)、最高長期溫度 = 110° F (43° C)。對於溫度範圍 C:最高短期溫度 = 176° F (80° C)、最高長期溫度 = 110° F (43° C),將上方數值乘以 0.92。對於溫度範圍 C:最高短期溫度 = 248° F (120° C)、最高長期溫度 = 162° F (72° C),將上方數值乘以 0.78。長期混凝土溫度會在相當長的一段時間內保持大致恆定。
 6 表列值適用於乾燥和水飽和混凝土條件。
 7 表列值僅適用於乾燥和水飽和混凝土條件。
 8 表列值僅限於額定重量混凝土。對於輕質混凝土,將設計強度(係數阻力)如下所示乘以入。對於輕質砂混凝土,入。= 0.51;對於全輕質混凝土,入。= 0.45。
 9 表列值僅適用於靜態荷載。如需得出地震荷載,請將開裂混凝土的表列拉力和剪力值乘以下列折減係數:
 M10 α。= 0.66 M12,M16 α。。= 0.74 M20 α。。= 0.75 M24 α。。= 0.71 如需抗震應用的其他資訊,請參閱第 3.1.8 節。

表 17 — Hilti HAS-U-T& HAS-U-T R2 螺桿的鋼材設計強度

		-0.11 115-1115 10-011					
	ŀ	HAS-U-T 碳鋼螺桿 (5.8 級)	HAS-U-T R2不銹鋼螺桿			
標準錨栓直徑	拉力 pN _{sa} kgf (kN)	剪力 φV _{sa} kgf (kN)	抗震剪力 φV _{sa,eq} kgf (kN)	拉力 pN _{sa} kgf (kN)	剪力	抗震剪力 φV _{sa,eq} kgf (kN)	
M10	18.9	8.7	6.1	26.0	14.4	10.1	
M12	27.3	15.3	10.7	37.8	20.9	14.7	
M16	51.0	28.2	19.7	70.4	39.0	27.3	
M20	79.6	44.1	30.9	93.3	51.7	36.2	
M24	114.7	63.6	44.5	134.5	74.5	52.1	

- 1 不允許在埋入深度與混凝土的抗壓強度之間進行線性計算。若有不同設計條件,請使用喜利得錨栓設計軟體 PROFIS Engineering。 2 表中數值為單根錨栓數值,且未折減邊距、錨栓間距或混凝土厚度。表7表8需與表9 的鋼材數值比較。以數值較小者為準。如遇較複雜的錨栓設計,請使用喜利得錨栓設計軟體 PROFIS 2 衣甲數值為車根細柱數值,且未折減透距、細柱间距或混凝工厚度。衣/衣8需與衣9的銅付數值比較。以數值較小 Engineering。
 3 資料適用於溫度範圍 A:最大短期溫度 = 55°C,最大長期溫度 = 43°C。
 4 表中數值適用於乾或水飽和混凝土條件。如需用於其他條件。請洽詢喜利得工程師。
 5 表中的數值僅適用於標準配比的混凝土。如需用於輕型混凝土,請洽詢喜利得工程師。
 6 表中數值適用於使用鎢鋼電鎚鑽頭鑽鑿的混凝土鑽孔。有關開製混凝土條件下的礦石鑽孔,請洽詢喜利得工程師。
 7 如需耐震負載資訊,請洽詢喜利得工程師。

錨栓緊固技術指引

3.2.2

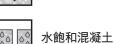
3.2.2

HIT-HY 200 R V3 搭配 HIS-N 內牙螺桿

圖 12 — 喜利得 HIS-N 和 HIS-RN 內牙螺桿安裝條件

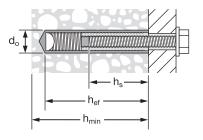
非開裂混凝土

適用混凝土條件



乾混凝土

以碳化鎢頭鑽頭進行錘鑽



喜利得 TE-CD 或 TE-YD 空 心鑽頭

表 18 - 喜利得 HIS-N 和 HIS-RN 規格

安裝資訊		符號	單位			螺紋尺寸		
艾 表貝矶		1寸5元	+ 四	M8	M10	M12	M16	M20
內牙螺桿外直徑			mm	12.5	16.5	20.5	25.4	27.6
標準鑽頭直徑		d。	mm	14	11/16	7/8	1-1/8	1-1/4
有效埋深		h _{ef}	mm	90	110	125	170	205
內螺紋長度	最小	h _s	mm	8	10	12	16	20
门 縣似下反	最大		mm	20	25	30	40	50
安裝扭矩		т	ft-lb		15	30	60	100
艾袋扭定		inst	(Nm)	(10)	(20)	(40)	(81)	(136)
最小混凝土厚度		h _{min}	(mm)	120	(150)	(170)	(230)	(270)
最小邊距		C _{min}	(mm)	63	(83)	(102)	(127)	(140)
最小錨栓間距		S _{min}	(mm)	63	(83)	(102)	(127)	(140)

圖 13 — 喜利得 HIS-N 和 HIS-RN 規格

表 19 — 對於在非開裂混凝土中安裝喜利得 HIS-N 和 HIS-RN 內牙螺桿,喜利得 HIT-HY 200 R V3 化學藥劑的設計強度 **超混凝十/黏結破壞** 1,2,3,4,5,6,7,8,9

 /	元/応元上/ 和 nu 収 収											
			拉力 –	— ФN _n		剪力 -	— ΦV _n					
	有效埋深	$f'_{c} = 175 \text{ kgf/cm}^2$	$f'_{c} = 210 \text{ kgf/cm}^{2}$	f' = 280 kgf/cm ²	f'_{c} = 420 kgf/cm ²	f'_{c} = 175 kgf/cm ²	f' = 210 kgf/cm ²	$f'_{c} = 280 \text{ kgf/cm}^{2}$	$f'_{s} = 420 \text{ kgf/cm}^2$			
螺紋尺寸	(mm)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)			
M10	111	3,239	3,547	4,096	5,017	6,974	7,638	8,820	10,802			
IVITO	111	(31.8)	(34.8)	(40.2)	(49.2)	(68.4)	(74.9)	(86.5)	(105.9)			
M12	127	3,955	4,334	5,003	6,128	8,521	9,333	10,777	13,200			
IVIIZ	127	(38.8)	(42.5)	(49.1)	(60.1)	(83.6)	(91.5)	(105.7)	(129.4)			
M16	171	6,205	6,797	7,849	9,612	13,363	14,640	16,903	20,704			
IVITO	171	(60.9)	(66.7)	(77.0)	(94.3)	(131.0)	(143.6)	(165.8)	(203.0)			
M20	206	8,194	8,977	10,365	12,694	17,649	19,332	22,324	27,340			
10120		(80.4)	(88.0)	(101.6)	(124.5)	(173.1)	(189.6)	(218.9)	(268.1)			

表 20 — 對於在開裂混凝土中安裝喜利得 HIS-N 和 HIS-RN 內牙螺桿,喜利得 HIT-HY 200 R V3 化學藥劑的設計強度 與混凝土/黏結破壞 1,2,3,4,5,6,7,8,9

	- Street - January - Street -											
			拉力 -	— ФN _n			剪力 — ΦV _n					
	有效埋深	f' _c = 175 kgf/cm ²										
螺紋尺寸	(mm)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)			
M10	111	2,291	2,420	2,638	2,980	4,935	5,214	5,684	6,418			
IVITO	111	(22.5)	(23.7)	(25.9)	(29.2)	(48.4)	(51.1)	(55.7)	(62.9)			
M12	127	2,801	3,069	3,545	4,341	6,035	6,611	7,634	9,349			
IVITZ	121	(27.5)	(30.1)	(34.8)	(42.6)	(59.2)	(64.8)	(74.9)	(91.7)			
M16	171	4,395	4,815	5,559	6,808	9,466	10,369	11,973	14,665			
	171	(43.1)	(47.2)	(54.5)	(66.8)	(92.8)	(101.7)	(117.4)	(143.8)			
M20	206	5,804	6,357	7,341	8,992	12,501	13,694	15,812	19,366			
17120	200	(56.9)	(62.3)	(72.0)	(88.2)	(122.6)	(134.3)	(155.1)	(189.9)			

- 6 表列值適用於短期荷載。如需了解長期荷載的數值,包括高架用途,請參閱第 3.1.8 節。 7 表列值僅適用於短期荷載。如需了解長期荷載的數值,包括高架用途,請參閱第 3.1.8 節。

表 21 — 享利得 HIS-N 和 HIS-RN 內牙螺桿鋼型螺栓/螺络的鋼材設計強度1,23

		ASTM A193 B7		ASTM A193 Grade B8M stainless steel			
螺紋尺寸	拉力⁴	剪力⁵	抗震剪力 ⁶	拉力⁴	剪力⁵	抗震剪力 ⁶	
	φN _{sa}	φV _{sa}	φV _{sa,eq}	φN _{sa}	φV _{sa}	φV _{sa,eq}	
	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	
M10	2,858	1,583	1,109	2,513	1,393	975	
	(28.0)	(15.5)	(10.9)	(24.6)	(13.7)	(9.6)	
M12	5,230	2,896	2,028	4,602	2,549	1,785	
	(51.3)	(28.4)	(19.9)	(45.1)	(25.0)	(17.5)	
M16	8,330	4,613	3,230	7,330	4,060	2,842	
	(81.7)	(45.2)	(31.6)	(71.9)	(39.8)	(27.9)	
M20	12,329	6,829	4,781	10,848	6,008	4,205	
	(120.9)	(67.0)	(46.9)	(106.4)	(58.9)	(41.2)	

- 1 請參閱第 3.1.8 節將設計強度(係數阻力)值轉換為 ASD 值。 2 具有鋼製螺栓的 Hilti HIS-N 和 HIS-RN 內牙螺桿可視為脆性鋼構件。
- 表列值為 HIS-N 內牙螺桿的鋼材破壞以及插入鋼製螺栓的鋼材破壞二者中的較小值。

磚石設計資料

利用喜利得 HIT-HY 200 R V3 化學藥劑在灌漿 CMU 中安裝 HAS-U-T-(R2) 螺桿、竹節鋼筋和利得 HIT-Z(-R) 螺桿

圖 9 - 喜利得 HAS-U-T-(R2) 螺桿安裝條件

允許的基材

灌漿混凝土磚

適用鑽孔 方式

以碳化鎢頭鑽頭進行錘鑽

喜利得 TE-CD 或 TE-YD 空心

表 22 — 喜利得 HIT-HY 200 R V3 對使用在灌漿混凝土磚牆表面的螺桿、HIT-Z(-R) 螺桿和鋼筋的容許黏著式 接合抗拉荷載 1,2,3,4,5,6,7,8

	12 H 1 01 T 13 TW											
					間距9		邊距10					
標準錨栓 直徑	鋼筋尺寸	有效埋深 (mm) ¹¹	拉力 kN	臨界 s _{er} mm	最小 S _{min} mm	荷載折減係數 @ s _{min} ¹²	臨界 s _c mm	最小 S _{min} mm	荷載折減係數 @ S _{min} 12			
M10	No. 3	86	4.3	343		0.60	305		0.58			
M12	No. 4	114	6.8	457	102	0.60	508	102	0.70			
M16	No. 5	143	8.1	572	102	0.50	508	102	0.82			
M20	No. 6	171	9.9	686		0.50	508		0.68			

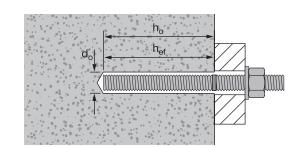
表 23 — 喜利得 HIT-HY 200 R V3 對使用在灌漿混凝土磚牆表面的螺桿、HIT-Z(-R) 螺桿和鋼筋的容許黏著式 接合剪力荷載1,2,3,4,5,6,7,8

					間距	9	邊距10				
標準錨栓 直徑	鋼筋 尺寸	有效埋深 (mm) ¹¹	剪力 kN	臨界 S _{cr} mm	最小 s _{min} mm	荷載折減係數 @ S _{min} ¹²	臨界 S _{cr} mm	最小 s _{min} mm	荷載折減係	數 @ C _{min} 12 荷載 II 邊緣	
M10	No. 3	86	3.7	343		0.56	305		0.60	0.72	
M12	No. 4	114	5.5	457	102	0.50	305	102	0.44	0.85	
M16	No. 5	143	9.4	572	102	0.50	508	102	0.22	0.71	
M20	No. 6	171	11.0	686		0.50	508		0.19	0.71	

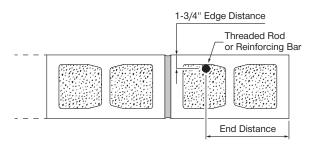
- 所有值皆適用於以最小磚石棱柱強度 1,500 psi 安裝在完全灌漿混凝土磚石中的錨栓。根據 ASTM C90 規範,混凝土磚石單元應屬輕質、中質或重質。計算容許荷載時的安全係數為 5。

- 所有值音適用於以最小時石段柱強度 1,500 pSI 女姿在无主准项汇模工時石中的類性。 根據 ASTM GSU 規範,混凝工時石单元應屬輕貝、中員或里員。 計算各計何載時的女至係數為 5。 錨栓可安裝在磚石牆表面的任何位置,包括隔室、腹板和砂漿接合處。錨栓僅限在每個磚石隔室安裝一個。 在最小間距 (s,___) 和臨界間距 (s,__) 之間,以及最小邊距 (c,__) 入間,可使用線性內插法計算荷載值。 混凝土磚石厚度必須等於或大於錨栓埋深的 1.5 倍。例外:5/8 英吋和 3/4 英吋直徑的錨栓 (5 號和 6 號鋼筋) 可安裝在最小標準厚度為 8 英吋的混凝土磚石。 根據 IBC 第 1605.3.1 節使用基本荷載組合時,不可針對地震或風力荷載而增加表列容許荷載。使用 IBC 第1605.3.2 節的替代性基本荷載組合,包括地震或風力荷載,則可將表列容許荷載增
- 加 33-1/3 %,或者也可將替代性基本荷載組合乘以 0.75 的折減係數。 容許荷載必須為經過調整的磚石或接合表列值以及表 102 和 103 中的鋼值中的较小值。
- 為了適應升高的基材溫度,應根據圖 14 調整表格中列出的允許載荷。
- 8 如為組合的荷載:「Table / Table / Ta

- 12 荷載折減係數是乘性數值,無論間距或邊距折減係數都必須納入考量。錨栓的安裝荷載值若低於 \mathbf{s}_a 和 \mathbf{c}_a ,必須根據實際邊距 (\mathbf{c}) 和間距 (\mathbf{s}) 乘以適當荷載折減係數。


表 24 — 喜利得 HIT-HY 200 R V3 對使用在灌漿混凝土磚牆頂端的螺桿和鋼筋的容許黏著式接合荷載1,2,3,4,5,6,7

					剪力荷載 kgf (kN) ⁹		
標準錨栓直徑或 鋼筋尺寸	有效埋深 (mm)	邊距 mm ⁸	最小端距 mm	拉力 kgf (kN)	荷載與磚石牆 邊緣平行	荷載與磚石牆 邊緣垂直	
		44		685	775	285	
M10	114	44		(3.0)	(3.4)	(1.3)	
IVITO	114	102		880	1,156	480	
				(3.9)	(5.1)	(2.1)	
	143	44		830	890	315	
M16		44	203	(3.7)	(4.0)	(1.4)	
IVITO		102		980	1,315	625	
				(4.4)	(5.8)	(2.8)	
M16	114			770	605	235	
IVI 10	114	44		(3.4)	(2.7)	(1.0)	
M20	143	44		795	720	295	
IVIZU				(3.5)	(3.2)	(1.3)	


- 所有值皆適用於以最小磚石棱柱強度 1,500 psi 安裝在完全灌漿混凝土磚石中的錨栓。根據 ASTM C90 規範,混凝土磚石單元應屬輕質、中質或重質。計算容許荷載時的安全係數為 5。 根據 IBC 第1605.3.1 節使用基本荷載組合或根據 IBC 第1605.3.2 節使用替代性基本荷載組合時。表列容許荷載不得針對地震或風力荷載而增加。

- 織栓應容許安裝在每個混凝土砌塊上。 錨栓不可安裝在混凝土磚石單元的擴頭接合處、翼緣或腹板。
- 容許荷載必須為經過調整的磚石或接合表列值以及表 102 和 103 中的鋼值中的较小值。
- 根據圖 14, 基材溫度上升時,表列容許荷載必須調整。 如為組合的荷載:(T_{appled} / T_{alloweble}) + (V_{appled} / V_{alloweble}) ≤ 1 表列邊距是從錨栓中線測量到混凝土砌塊邊緣。請見下圖。 兩個表列邊距之間的荷載值可用線性內插法計算。

喜利得 HIT-HY 200 R V3 對於使用在灌漿磚石牆 的 HAS-U-T-(R2) 螺桿的規格

螺桿和鋼筋安裝在灌漿 CMU 頂部時的邊緣和端距

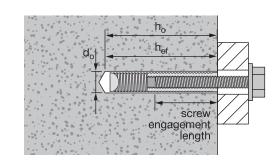
表 25 — 喜利得 HIT-HY 200 R V3 針對螺桿的容許拉力和剪力值,以鋼材強度為根據^{1,2,3}

			拉力I	b (kN)			剪力 lb (kN)						
錨栓直徑	ISO 898 class	ASTM	ASTM	ASTM A193	ASTM F593 CW		ISO 898 class	ASTM	ASTM	ASTM A193	ASTM F593 CW		
(mm)	5.8	A36	A307	B7	(316/304)	HIT-(Z(-R)	5.8	A36	A307	B7	(316/304)	HIT-(Z(-R)	
M10	1,197	959	991	2,066	1,653	1,556	617	494	510	1,064	850	803	
	(11.7)	(9.4)	(9.7)	(20.3)	(16.2)	(15.3)	(6.0)	(4.8)	(5.0)	(10.4)	(8.3)	(7.9)	
M12	2,132	1,703	1,762	3,674	2,939	2,767	1,098	878	907	1,891	1513	1427	
10112	(20.9)	(16.7)	(17.3)	(36.0)	(28.8)	(27.1)	(10.8)	(8.6)	(8.9)	(18.5)	(14.8)	(14.0)	
M16	3,329	2,663	2,756	5,740	4,593	4,325	1,715	1,372	1,420	2,957	2365	2229	
IVITO	(32.6)	(26.1)	(27.0)	(56.3)	(45.0)	(42.4)	(16.8)	(13.5)	(13.9)	(29.0)	(23.2)	(21.9)	
M20	4,794	3,835	3,969	8,267	5,620	6,230	2,470	1,975	2,043	4,259	2896	3209	
IVIZU	(47.0)	(37.6)	(38.9)	(81.1)	(55.1)	(61.1)	(24.2)	(19.4)	(20.0)	(41.8)	(28.4)	(31.5)	

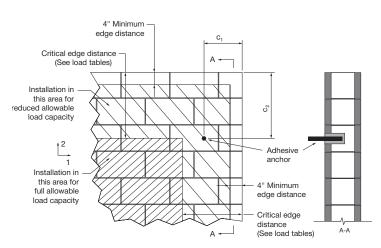
表 26 — 喜利得 HIT-HY 200 R V3 針對鋼筋的容許拉力和剪力值,以鋼材強度為根據^{1,2,3}

·											
	拉力 kgf (kN)	剪力 kgf (kN)									
鋼筋尺寸	ASTM A615, GRADE 60	ASTM A615, GRADE 60									
#3	1483	764									
#3	(14.5)	(7.5)									
#4	2694	1388									
#4	(26.4)	(13.6)									
#5	4175	2152									
#3	(40.9)	(21.1)									
#6	5928	3053									
#0	(58.1)	(29.9)									

- 設計中使用的容許荷載必須為接合值和表列網值二者中較小數值。 用於承受風力或地震等短期荷載的螺桿容許拉力和剪力值,必須根據適當的 IBC 章節加以計算。 容許鋼材荷載的依據為拉力和剪力應力,兩者分別為 0.33 x Fu 和 0.17 x Fu。


表 27 - 享利得 HIT-HY 200 R V3 對使用在灌漿混凝土磚牆表面的 HIS-N 內牙螺桿的容許黏著式接合荷載1,2,3,45,6,7,8

			間距9				邊距10	
螺紋尺寸 (mm)	有效埋深 (mm) ¹¹	拉力 kgf (kN)	臨界 s _{cr} mm	最小 s _{min} mm	荷載折減係數 @ s _{min} 12	臨界 c _c mm	最小 c _{min} mm	荷載折減係數 @ c _{min} 12
M10	111	615 (6.0)	432	102	0.68	305	102	0.81
M16	127	744 (7.3)	744 508		0.68	508	102	0.74
錨栓可安裝在磚 最小間距(s,,,)和 混凝土磚石箅度。 根據 IBC 第 160 加 33-1/3 %, 為 容許荷載必須為 為了適應升高的	石牆表面的任何位置, 內臨界間距 (s。) 之間, 必須等於或大於錨栓均 5.3.1 節使用基本荷載 法者也可將替代性基本	包括隔室、腹板和砂以及最小邊距 (c _{mi}) 和 經於的 1.5 倍。 組合時,不可針對地 育載組合乘以 0.75 的 方表列值以及表 102 和 4 調整表格中列出的:	漿接合處。錨栓僅限在 間臨界邊距 (c _c) 之間,「 震或風力荷載而增加表 折減係數。 1 103 中的鋼值中的较	E每個磚石隔室安裝一可使用線性內插法計算列容許荷載。使用 IBG				

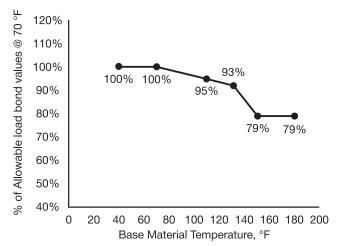

- 7 為了過應开高的基材溫度,應依據圖 14 調整來作中列缸的以前報何。 9 如為組合的荷載:(「_{applied} / V_{applied} / V_{applie}

- : · 在來足近紀之事可由予以即外配列無過 12 荷載抗滅係數是乘性數值,無論問距或邊距抗滅係數都必須納入考量。錨栓的安裝荷載值若低於 sg 和 cg ,必須根據實際邊距 (c) 和問距 (s) 乘以適當荷載折滅係數。

喜利得 HIT-HY 200 R V3 對於 HIS-N 內牙螺桿在灌漿磚石牆中的規格

灌漿混凝土砌塊表面上的錨栓容許安裝位置

表 28 — 喜利得 HIT-HY 200 R V3 對使用在灌漿混凝土磚牆表面的 HIS-N內牙螺桿的容許黏著式接合剪力荷載1,2,3,4,5,6,7,8


				間距	9	邊距10				
			臨界	最小		臨界	最小	荷載折減係數 @ c _{min} ¹²		
螺紋尺寸	有效埋深 (mm) ¹¹	剪力 kgf (kN)	s _{cr} mm	s _{min} mm	荷載折減係數 @ s _{min} ¹²	c _{cr} mm	c _{min} mm	荷載與邊緣垂直	荷載與邊緣平行	
M10	111	474 (4.6)	432	100	0.56	305	100	0.65	1.00	
M16	127	785 (7.7)	508	102	0.50	508	102	0.36	0.91	

- 所有值皆適用於以最小磚石棱柱強度 1,500 psi 安裝在完全灌漿混凝土磚石中的錨栓。根據 ASTM C90 規範,混凝土磚石單元應屬輕質、中質或重質。計算容許荷載時的安全係數為 5。

- 加33-1/3%,或者也可將替代性基本荷載組合乘以0.75的折減係數。6 容許荷載必須為經過調整的磚石或接合表列值以及表 102 和 103 中的鋼值中的较小值。
- 為了適應升高的基材溫度,應根據圖 14 調整表格中列出的允許載荷。

: · 在來足近此來時日本代日初,於公田之 12 · 荷載抗滅係數是乘性數值,無論間距或邊距抗滅係數都必須納入考量。錨栓的安裝荷載值若低於 sg 和 cg ,必須根據實際邊距 (c) 和間距 (s) 乘以適當荷載折減係數。

圖 14 - 溫度對於黏結強度的影響1

1 測試程序包含將混凝土維持在高溫 24 小時,然後從控制環境中移出,並測試破壞。

安裝說明

安裝使用說明 (IFU) 隨附在每個產品包裝。您也可以在線上檢視或下載,網址為 www.hilti.com.tw。因為可能隨時變更,所以請務 必確認下載的 IFU 在使用時為最新版本。為發揮完整效能,請務必正確安裝。可視需求提供培訓。如需了解 IFU 中未涉及的應用和 條件、請聯絡喜利得技術服務。

材料規格

圖 15 — 喜利得 HIT-HY 200 R V3 化學藥劑固化時間和作用時間 (約略值)

	HIT-HY 200-R									
33			S IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	HIT-Z ¹						
[°C]	[°F]	t _{work}	t _{cure}	t _{work}	t _{cure}					
-105	1423	3 h	20 h	-	_					
-40	2432	2 h	8 h	_	_					
15	3341	1 h	4 h	_	_					
610	4250	40 min	2.5 h	40 min	2.5 h					
1120	5168	15 min	1.5 h	15 min	1.5 h					
2130	6986	9 min	1 h	9 min	1 h					
3140	87104	6 min	1 h	6 min	1 h					

1 搭配 HIT-Z 螺桿安裝喜利得 HIT-HY 200 R V3 時可安裝在 14° F (-10° C) 環境,前提是鑽孔已清除粉塵。此安裝程序可使用喜利得 TE-CD 或 TE-YD 空心鑽頭完成,或使用標準螺桿並搭配清理程序。

固化的喜利得 HIT-HY 200 R V3 對化學物的抗性

化學		行為
乙酸	0.1	+
丙酮		•
氨	5%	+
苯甲醇		-
鹽酸	0.1	•
氯化石灰	0.1	+
檸檬酸	0.1	+
混凝土塑化劑		+
除冰鹽 (氯化鈣)		+
去礦質水		+
柴油		+
鑽孔粉塵懸浮物 pH 13.2		+
乙醇	96%	-
乙酸乙酯		-
甲酸	0.1	+
模板油		+
汽油		+
乙二醇		•
過氧化氫	0.1	•
乳酸	0.1	+
機油		+
丁酮		•
硝酸	0.1	•
磷酸	0.1	+
氧化鉀 pH 13.2		+
海水		+
污水污泥		+
碳酸鈉 10%	0.1	+
次氯酸鈉 2%	2%	+
<i>T</i> +IA	0.1	+
硫酸	30%	+
甲苯		•
		•

臨界: - 非抗性

+ 抗性

● 有限抗性

將 HIT-RE 200 R V3 化學藥劑樣品浸入各種化 合物長達一年。樣品接著於測試期結束時加以 分析。樣品只要沒有顯示可見損壞,且彎曲強 度折減不到 25%, 即可分級為「有抗性」。 樣本如有輕度損壞,例如微小裂口、碎片等, 或彎曲強度折損達 25% 或以上, 則分級為 「有限抗性」(亦即暴露達48 小時或以內, 之 後已將化學物品清除)。嚴重損壞或毀壞的樣 品分級為「非抗性」。

附註:在實際使用情況下,大多數化學藥劑都 包覆在基材中, 暴露表面積很小。

3.2.3 HIT-RE 500 V3 環氧樹脂化學型錨栓系統

產品介紹

HIT-RE 500 V3, 螺桿、鋼筋和 HIS-N/RN 內牙螺桿

非開裂混凝土

開裂混凝土

地震設計類別 A-F

用於開裂和非開裂 空心鑽頭打毛工具 混凝土的鑽石鑽孔

Profis Engineering 錨栓設計軟體

核准/列名認證	
ICC-ES(國際規範委員會)	在混凝土中使用 ESR-3814 符合 ACI 318/土木 401 第 17 章/ACI 355.2/ICC-ES AC308 標準 在混凝土中使用 ELC-3814 符合 CSA A23.3 / ACI 355.2 標準
NSF/ANSI 標準 61	在飲用水中的使用認證
歐洲技術核准	ETA-16/0142、ETA-16/0143、ETA-16/0180
洛杉磯市	洛杉磯市 2017 年 LABC 補充說明(符合 ESR-3814 標準)
佛羅里達州建築法規	2017 年 FBC 補充說明(符合 ESR-1814 標準)
美國綠色建築委員會	LEED® Credit 4.1-低放射性材料
美國運輸部	請聯絡喜利得了解各州規定

材料規格

表 1 — 充分固化 HIT-RE 500 V3 的材料性質

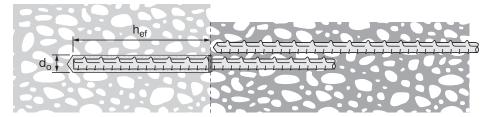
黏結強度 ASTM C882-13A ¹		
2 天固化	10.8 MPa	1,560 psi
14 天固化	11.7 MPa	1,690 psi
抗壓強度 ASTM D695-10 ¹	82.7 MPa	12,000 psi
抗壓模量 ASTM D695-10 ¹	2,600 MPa	0.38 x 10 ⁶ psi
抗拉強度 7 天 ASTM D638-14	49.3 MPa	7,150 psi
斷裂伸長率 ASTM D638-14	1.1%	1.1%
熱變形溫度 ASTM D648-07	50°C	122°F
吸收 ASTM D570-98	0.18%	0.18%
固化縮減線性係數 ASTM D2566-86	0.008	0.008

混凝土設計資料符合 ACI 318/土木 401 標準

ACI 318/土木 401 第 17 章設計

本節採用的荷載值為喜利得簡化設計表。本節荷載表係使用強度設計參數和 ESR-3814 變量,以及 ACI 318/土木 401 第 17 章內的 公式制定而成。如需喜利得簡化設計表的詳細說明,請參閱第 3.1.8 節。ESR-3814 資料表不包含在本節,但可在以下網址參閱: www.icc-es.org 或 www.hilti.com.tw.

錨栓緊固技術指引



HIT-RE 500 V3 化學藥劑和竹節鋼筋

图 1 _ 使田支利得 HIT-RF 500 V3 化粤藥劑安裝鋼筋

開製或非開製	喜利得 HIT-RE 500 V3 混凝土	化字樂削女袋驯肋	適用鑽孔方式	Ĭ	
713-DC-70 713-DC	, 100 N. L.		2/19/10/10		乾混凝土
			電錘鑽孔		水飽和混凝土
	開裂和		搭配碳化鎢鑽頭	A	含水孔洞
	非開裂混凝土				水浸泡孔 (水下)
			喜利得 TE-CD 或 TE-YD 空心鑽頭和 VC 20/40 吸塵器		乾混凝土
		+	鑽石鑽頭搭配 喜利得 TE-YRT 打毛工具		水飽和混凝土
	非開裂混凝土		鑽石鑽頭		乾混凝土
	1下1的交小比/处工	44			水飽和混凝土

圖 2 — 搭配喜利得 HIT-RE 500 V3 化學藥劑安裝的鋼筋

表 2 — 搭配 HIT-RE 500 V3 化學藥劑安裝的鋼筋規格

力壯次÷⊓	安裝資訊		單位	鋼筋尺寸							
女叛貝訊	符號	#3		#4	#5	#6	#7	#8	#9	#10	
標準鑽頭直徑	d _o	mm	12.7	16	19	25	28	32	36	40	
有效埋深	最小	h _{ef,min}	mm	60	60	76	76	85	102	114	127
有双垤/木	最大	h _{ef,max}	mm	191	254	318	381	445	508	572	635
最小混凝土厚度		h _{min}	mm	(h _{ef} -	+ 30)	(h _{ef} + 2d _o)					
最小邊距 ¹			mm	48	64	79	95	111	127	143	159
最小錨栓間距	S _{min}	mm	48	64	79	95	111	127	143	159	

¹ 允許44mm 的邊距,前提是鋼筋保持非扭矩。

備註:如需了解如何根據 ACI318/土木401/ CIVIL 第 25 章 (原 ACI 318-11/ 土木401 第 12 章) 取得使用喜利得 HIT-RE 500V3 搭配鋼筋進行典型發展計算,請參閱喜利得鋼筋設計手冊。

表 3 — 對於在非開裂混凝土中安裝鋼筋,喜利得 HIT-RE 500 V3 化學藥劑的設計強度與混凝土/黏結破壞 1,2,3,4,5,6,7,8,9,11

錨栓緊固技術指引

			拉力 -	— φN _n			剪力 — φV _n				
鋼筋尺寸	有效埋深 mm	f'c = 175 kgf/cm² kgf (kN)	f' = 210 kgf/cm² kgf (kN)	f' = 280 kgf/cm² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	f' c = 210 kgf/cm² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)		
	86	2,075 (20.4)	2,173 (21.3)	2,334 (22.9)	2,583 (25.3)	4,470 (43.8)	4,677 (45.9)	5,026 (49.3)	5,563 (54.6)		
#3	114	2,767	2,896	3,112	3,443	5,958	6,237	6,702	7,416		
	191	(27.1) 4,611	(28.4) 4,826	(30.5) 5,187	(33.8) 5,740	(58.4) 9,931	(61.2) 10,394	(65.7) 11,170	(72.7) 12,360		
	114	(45.2) 3,377	(47.3) 3,699	(50.9) 4,078	(56.3) 4,513	(97.4) 7,273	(101.9) 7,970	(109.5) 8,784	(121.2) 9,720		
#4	152	(33.1) 4,835	(36.3) 5,060	(40.0) 5,439	(44.3) 6,017	(71.3) 10,414	(78.2) 10,900	(86.1) 11,712	(95.3) 12,961		
	254	(47.4) 8,058	(49.6) 8,435	(53.3) 9,063	(59.0) 10,029	(102.1) 17,357	(106.9) 18,166	(114.9) 19,520	(127.1) 21,602		
	143	(79.0) 4,720	(82.7) 5,171	(88.9) 5,972	(98.3) 6,972	(170.2) 10,167	(178.2) 11,136	(191.4) 12,859	(211.8) 15,016		
#5 ¹⁰	191	(46.3) 7,267	(50.7) 7,815	(58.6) 8,398	(68.4) 9,294	(99.7) 15,651	(109.2) 16,835	(126.1) 18,089	(147.3) 20,019		
#5"		(71.3) 12,447	(76.6) 13,027	(82.4) 13,998	(91.1) 15,492	(153.5) 26,807	(165.1) 28,057	(177.4) 30,150	(196.3) 33,366		
	318	(122.1) 6,205	(127.8) 6,797	(137.3) 7,849	(151.9) 9,612	(262.9) 13,363	(275.1) 14,640	(295.7) 16,903	(327.2)		
	171	(60.9) 9,553	(66.7) 10,464	(77.0) 11,884	(94.3) 13,152	(131.0) 20,575	(143.6) 22,539	(165.8) 25,596	(203.0) 28,327		
#6 ¹⁰	229	(93.7) 17,611	(102.6) 18,432	(116.5)	(129.0) 21,920	(201.8) 37,929	(221.0) 39,698	(251.0) 42,658	(277.8) 47,210		
	381	(172.7)	(180.8) 8,566	(194.2) 9,891	(215.0) 12,113	(372.0)	(389.3)	(418.3) 21,301	(463.0) 26,088		
	200	(76.7)	(84.0)	(97.0)	(118.8)	(165.1)	(180.9)	(208.9)	(255.8)		
#710	267	12,038 (118.1)	13,186 (129.3)	15,227 (149.3)	17,688 (173.5)	25,927 (254.3)	28,402 (278.5)	32,795 (321.6)	38,099 (373.6)		
	445	23,687 (232.3)	24,791 (243.1)	26,639 (261.2)	29,481 (289.1)	51,015 (500.3)	53,395 (523.6)	57,377 (562.7)	63,498 (622.7)		
	229	9,553 (93.7)	10,464 (102.6)	12,084 (118.5)	14,798 (145.1)	20,575 (201.8)	22,539 (221.0)	26,025 (255.2)	31,874 (312.6)		
#810	305	14,708 (144.2)	16,112 (158.0)	18,604 (182.4)	22,689 (222.5)	31,677 (310.6)	34,700 (340.3)	40,068 (392.9)	48,868 (479.2)		
	508	30,382 (297.9)	31,797 (311.8)	34,169 (335.1)	37,814 (370.8)	65,435 (641.7)	68,488 (671.6)	73,595 (721.7)	81,447 (798.7)		
	257	11,399 (111.8)	12,487 (122.5)	14,417 (141.4)	17,658 (173.2)	24,551 (240.8)	26,893 (263.7)	31,055 (304.5)	38,034 (373.0)		
#910	343	17,549 (172.1)	19,223 (188.5)	22,199 (217.7)	27,188 (266.6)	37,798 (370.7)	41,406 (406.1)	47,811 (468.9)	58,556 (574.2)		
	572	37,759 (370.3)	39,753 (389.8)	42,717 (418.9)	47,276 (463.6)	81,329 (797.6)	85,622 (839.7)	92,007 (902.3)	101,822 (998.5)		
	286	13,349	14,624	16,887	20,682	28,755	31,500	36,371	44,545		
#10	381	(130.9) 20,555	(143.4) 22,516	(165.6) 26,000	(202.8)	(282.0) 44,271	(308.9) 48,496	(356.7) 55,998	(436.8) 68,583		
"10		(201.6) 44,225	(220.8) 48,169	(255.0) 51,762	(312.3) 57,284	(434.1) 95,254	(475.6) 103,750	(549.2) 111,486	(672.6) 123,379		
	635	(433.7)	(472.4)	(507.6)	(561.8)	(934.1)	(1017.4)	(1093.3)	(1209.9)		

^{□ 1} 如需荷載值發展說明,請參閱第 3.1.8 節。
2 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。
3 埋置深度和混凝土抗壓強度之間不允許使用線性內插法。
4 請視需要將表 8 至表 23 的間距、邊距及混凝土厚度係數套用至上述值。對比表 7 中的鋼材數值。將較小的值用於設計。
5 資料適用於溫度範圍 A:最高短期溫度 = 130°F (55°C)、最高長期溫度 = 110°F (43°C)。對於溫度範圍 B:最高短期溫度 = 176°F (80°C)、最高長期溫度 = 110°F (43°C),將上方數值乘以 0.69。混凝土溫度的短期上升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土溫度會在相當長的一段時間內保持大致恆空空

正。 6 表列值適用於乾混凝土和水飽和混凝土條件。對於沉水式(水下)應用,將設計強度乘以 0.45。 7 表列值僅適用於短期荷載。如需了解長期荷載的數值,包括高架用途,請參閱第 3.1.8 節。 8 表列值僅限於額定重量混凝土。對於輕質混凝土,將設計強度(係數阻力)如下所示乘以入:對於輕質砂混凝土,入 = 0.51;對於全輕質混凝土,λ = 0.45。 9 表列值適用於使用碳化鎢電鎚鑽頭在混凝土鑽的孔洞。如為鑽石鑽孔,除附註 10 所指示之外,均需將數值乘以 0.55。 10 在乾燥和水飽和混凝土中使用 5、6、7、8 和 9 號鋼筋,可採用鑽石鑽孔搭配喜利得 TE-YRT 打毛工具。請參閱表 5 11 表列值僅適用於靜態荷載。非開裂混凝土不容許採用抗震設計。

表 4 —對於在開裂混凝土中安裝鋼筋、 喜利得 HIT-RE 500 V3 化學藥劑的設計強度與混凝土/黏結破壞^{1,2,3,4,5,6,7,8,9,11}

又 4 一到	主用袋泥烧工! 	中女 装 剩肋,	音利特 DII-I	1E 300 V3 1/L	字策削的政市	「独及與泥綻工/黏結收壞」。 「			
			拉力 -	— φN _n			剪力 -	— φV _n	
鋼筋尺寸	有效埋深 mm	f' _c = 175 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	f'_{c} = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)
	86	1,554	1,626	1,699	1,805	3,348	3,504	3,658	3,887
	00	(15.2)	(15.9)	(16.7)	(17.7)	(32.8)	(34.4)	(35.9)	(38.1)
#3	114	2,109	2,168	2,263	2,406	4,545	4,672	4,876	5,182
π3	114	(20.7)	(21.3)	(22.2)	(23.6)	(44.6)	(45.8)	(47.8)	(50.8)
	191	3,518	3,615	3,774	4,010	7,575	7,786	8,128	8,639
	191	(34.5)	(35.5)	(37.0)	(39.3)	(74.3)	(76.4)	(79.7)	(84.7)
	114	2,393	2,622	3,025	3,232	5,153	5,645	6,518	6,960
	114	(23.5)	(25.7)	(29.7)	(31.7)	(50.5)	(55.4)	(63.9)	(68.3)
#4	152	3,683	3,883	4,055	4,309	7,933	8,364	8,734	9,283
#4	132	(36.1)	(38.1)	(39.8)	(42.3)	(77.8)	(82.0)	(85.7)	(91.0)
	254	6,298	6,473	6,759	7,183	13,567	13,941	14,558	15,470
	204	(61.8)	(63.5)	(66.3)	(70.4)	(133.0)	(136.7)	(142.8)	(151.7)
	143	3,343	3,663	4,230	5,162	7,201	7,888	9,108	11,118
	140	(32.8)	(35.9)	(41.5)	(50.6)	(70.6)	(77.4)	(89.3)	(109.0)
#5 ¹⁰	191	5,148	5,638	6,475	6,881	11,086	12,145	13,948	14,823
"0	101	(50.5)	(55.3)	(63.5)	(67.5)	(108.7)	(119.1)	(136.8)	(145.4)
	318	10,058	10,337	10,793	11,469	21,664	22,265	23,247	24,705
	0.0	(98.6)	(101.4)	(105.8)	(112.5)	(212.4)	(218.3)	(228.0)	(242.3)
	171	4,395	4,815	5,559	6,808	9,466	10,369	11,973	14,665
		(43.1)	(47.2)	(54.5)	(66.8)	(92.8)	(101.7)	(117.4)	(143.8)
#6 ¹⁰	229	6,768	7,412	8,559	10,052	14,574	15,964	18,434	21,652
,, 0		(66.4)	(72.7)	(83.9)	(98.6)	(142.9)	(156.6)	(180.8)	(212.3)
	381	14,558	15,100	15,767	16,753	31,359	32,523	33,958	36,088
		(142.8)	(148.1)	(154.6)	(164.3)	(307.5)	(318.9)	(333.0)	(353.9)
	200	5,538	6,067	7,006	8,580	11,929	13,068	15,089	18,479
		(54.3)	(59.5)	(68.7)	(84.1)	(117.0)	(128.2)	(148.0)	(181.2)
#7 ¹⁰	267	8,528	9,339	10,786	13,209	18,366	20,119	23,231	28,452
		(83.6)	(91.6)	(105.8)	(129.5)	(180.1)	(197.3)	(227.8)	(279.0)
	445	18,346	20,099	21,459	22,804	39,515	43,286	46,219	49,117
		(179.9)	(197.1)	(210.4)	(223.6)	(387.5)	(424.5)	(453.2)	(481.7)
	229	6,768	7,412	8,559	10,483	14,574	15,964	18,434	22,578
		(66.4)	(72.7)	(83.9)	(102.8)	(142.9)	(156.6)	(180.8)	(221.4)
#810	305	10,417	11,412	13,177	16,139	22,437	24,580	28,381	34,761
		(102.2)	(111.9)	(129.2)	(158.3)	(220.0)	(241.0)	(278.3)	(340.9)
	508	22,414	24,555	28,227	29,996	48,278	52,887	60,797	64,610
		(219.8)	(240.8)	(276.8)	(294.2)	(473.4)	(518.6)	(596.2)	(633.6)
	257	8,074	8,845	10,213	12,508	17,391	19,051	21,997	26,941
		(79.2)	(86.7)	(100.2)	(122.7)	(170.5)	(186.8)	(215.7)	(264.2)
#910	343	12,431	13,617	15,724	19,257	26,773	29,329	33,867	41,479
		(121.9)	(133.5)	(154.2)	(188.8)	(262.6)	(287.6)	(332.1)	(406.8)
	572	26,746	29,300	33,831	37,163	57,608	63,106	72,870	80,043
		(262.3)	(287.3)	(331.8)	(364.4)	(564.9)	(618.9)	(714.6)	(785.0)
	286	9,457	10,360	11,961	14,649	20,369	22,312	25,764	31,554
		(92.7)	(101.6)	(117.3)	(143.7)	(199.7)	(218.8)	(252.7)	(309.4)
#10	381	14,558	15,948	18,416	22,555	31,359	34,351	39,664	48,580
		(142.8)	(156.4)	(180.6)	(221.2)	(307.5)	(336.9)	(389.0)	(476.4)
	635	31,325	34,317	39,626	44,230	67,472	73,911	85,346	95,263
	000	(307.2)	(336.5)	(388.6)	(433.7)	(661.7)	(724.8)	(837.0)	(934.2)

- 如需荷載值發展說明,請參閱第3.1.8節。

- 1 如需何軟值發展說明, 請參閱第 3.1.8 即。 2 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。 3 埋置深度和混凝土抗壓強度之間不允許使用線性內插法。 4 請視需要將表 8 至表 23 的間距、邊距及混凝土厚度係數套用至上述值。對比表 7 中的鋼材數值。將較小的值用於設計。 5 資料適用於溫度範圍 A:最高短期溫度 = 130°F (55°C)、最高長期溫度 = 110°F (43°C)。對於溫度範圍 B:最高短期溫度 = 176°F (80°C)、最高長期溫度 = 110°F (43°C),將上方數值乘以 0.69。混凝土溫度的短期上升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土溫度會在相當長的一段時間內保持大致恆空中

- 定。
 6 表列值適用於乾混凝土和水飽和混凝土條件。對於沉水式(水下)應用,將設計強度乘以 0.45。
 7 表列值僅適用於短期荷載。如需了解長期荷載的數值,包括高架用途,請參閱第 3.1.8 節。
 8 表列值僅限於額定重量混凝土。對於輕質混凝土,將設計強度(係數阻力)如下所示乘以入:對於輕質砂混凝土,λ。= 0.51;對於全輕質混凝土,λ。= 0.45。
 9 表列值適用於使用碳化鎢電鎚鑽頭在混凝土鑽的孔洞。如為鑽石鑽孔,除附註 10 所指示之外,均需將數值乘以 0.55。
 10 在乾燥和水飽和混凝土中使用 5、6、7、8 和 9 號鋼筋,可採用鑽石鑽孔搭配喜利得 TE-YRT 打毛工具。請參閱表 6
 11 表列值僅限靜態荷載。非開裂混凝土不允許進行抗震設計。對於抗震荷載,將拉力和剪力的開裂混凝土表列值乘以α。= 0.69。有關地震應用的其他資訊,請參閱第 3.1.8

表 5 — 對於在非開裂混凝土中安裝的鋼筋,在採用鑽石鑽孔搭配 TE-YRT 打毛工具處理鑽孔後,喜利得 HIT-RE 500 V3 化學藥劑 的設計強度與混凝土/黏結破壞1,2,3,4,5,6,7,8,9

			拉力 -					— φV _n	
鋼筋尺寸	有效埋深 mm	f' _c = 175 kgf/cm ² kgf (kN)			f' _c = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)		f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)
	143	4,720 (46.3)	5,171 (50.7)	5,602 (54.9)	5,602 (54.9)	10,167 (99.7)	11,136 (109.2)	12,063 (118.3)	12,063 (118.3)
#5	191	7,267 (71.3)	7,468 (73.2)	7,468 (73.2)	7,468 (73.2)	15,651 (153.5)	16,084 (157.7)	16,084 (157.7)	16,084 (157.7)
	318	12,447 (122.1)	12,447 (122.1)	12,447 (122.1)	12,447 (122.1)	26,807 (262.9)	26,807 (262.9)	26,807 (262.9)	26,807 (262.9)
	171	6,205 (60.9)	6,797 (66.7)	7,849 (77.0)	7,924 (77.7)	13,363 (131.0)	14,640 (143.6)	16,903 (165.8)	17,069 (167.4)
#6	229	9,553 (93.7)	10,464 (102.6)	10,566 (103.6)	10,566 (103.6)	20,575 (201.8)	22,539 (221.0)	22,759 (223.2)	22,759 (223.2)
	286	13,209 (129.5)	13,209 (129.5)	13,209 (129.5)	13,209 (129.5)	28,447 (279.0)	28,447 (279.0)	28,447 (279.0)	28,447 (279.0)
	200	7,818 (76.7)	8,566 (84.0)	9,891 (97.0)	10,659 (104.5)	16,840 (165.1)	18,448 (180.9)	21,301 (208.9)	22,956 (225.1)
#7	267	12,038 (118.1)	13,186 (129.3)	14,211 (139.4)	14,211 (139.4)	25,927 (254.3)	28,402 (278.5)	30,611 (300.2)	30,611 (300.2)
	445	23,687 (232.3)	23,687 (232.3)	23,687 (232.3)	23,687 (232.3)	51,015 (500.3)	51,015 (500.3)	51,015 (500.3)	51,015 (500.3)
	229	9,553 (93.7)	10,464 (102.6)	12,084 (118.5)	13,671 (134.1)	20,575 (201.8)	22,539 (221.0)	26,025 (255.2)	29,447 (288.8)
#8	305	14,708 (144.2)	16,112 (158.0)	18,228 (178.8)	18,228 (178.8)	31,677 (310.6)	34,700 (340.3)	39,261 (385.0)	39,261 (385.0)
	508	30,382 (297.9)	30,382 (297.9)	30,382 (297.9)	30,382 (297.9)	65,435 (641.7)	65,435 (641.7)	65,435 (641.7)	65,435 (641.7)
	257	11,399 (111.8)	12,487 (122.5)	14,417 (141.4)	17,091 (167.6)	24,551 (240.8)	26,893 (263.7)	31,055 (304.5)	36,814 (361.0)
#9	343	17,549 (172.1)	19,223 (188.5)	22,199 (217.7)	22,788 (223.5)	37,798 (370.7)	41,406 (406.1)	47,811 (468.9)	49,085 (481.4)
	572	37,759 (370.3)	37,982 (372.5)	37,982 (372.5)	37,982 (372.5)	81,329 (797.6)	81,808 (802.3)	81,808 (802.3)	81,808 (802.3)

如需荷載值發展說明,請參閱第 3.1.8 節。

² 請參閱第3.1.8 節將設計強度值轉換為 ASD 值。 3 埋置深度和混凝土抗壓強度之間不允許使用線性內插法。

⁵ 全量不及可能。 全量不及可能。 全量不及可能。 全量不及可能。 全量不及可能。 全量不及可能。 全量不及可能。 全量不及可能。 是更及混凝土厚度係數套用至上述值。對比表 7 中的鋼材數值。將較小的值用於設計。 5 資料適用於溫度範圍 A:最高短期溫度 = 130°F (55°C)、最高長期溫度 = 110°F (43°C)。對於溫度範圍 B::最高短期溫度 = 176°F (80°C)、最高長期溫度 = 110°F (43°C),將上方數值乘以 0.69。長期混凝土溫度會在相當長的一段時間內保持大致恆定。

⁶ 表列值適用於乾混凝土和水飽和混凝土條件。

表列值值通用於短期荷載。如需了將長期荷載的數值,包括高架用途,請參閱第 3.1.8 節。 表列值值限於額定重量混凝土。對於輕質混凝土,將設計強度(係數阻力)如下所示乘以 λ_a :對於輕質砂混凝土, λ_a = 0.51;對於全輕質混凝土, λ_a = 0.45。

⁹ 表列值僅適用於靜態荷載。非開裂混凝土不容許採用抗震設計。

63

表 6 — 針對在開裂混凝土中安裝的鋼筋,在採用鑽石鑽孔搭配 TE-YRT 打毛工具處理鑽孔後,HIT-RE 500 V3 化學藥劑的設計 強度與混凝土/黏結破壞1,2,3,4,5,6,7,8,9

			+						
			拉刀 -	— φN _n	Y			— φV _n	
Rebar size	Effective embedment mm	f' _c = 175 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	f'_{c} = 175 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)
	440	3,159	3,159	3,159	3,159	6,804	6,804	6,804	6,804
	143	(31.0)	(31.0)	(31.0)	(31.0)	(66.7)	(66.7)	(66.7)	(66.7)
#5	101	4,212	4,212	4,212	4,212	9,072	9,072	9,072	9,072
#5	191	(41.3)	(41.3)	(41.3)	(41.3)	(89.0)	(89.0)	(89.0)	(89.0)
	040	7,019	7,019	7,019	7,019	15,118	15,118	15,118	15,118
	318	(68.8)	(68.8)	(68.8)	(68.8)	(148.3)	(148.3)	(148.3)	(148.3)
	474	4,395	4,643	4,643	4,643	9,466	9,999	9,999	9,999
	171	(43.1)	(45.5)	(45.5)	(45.5)	(92.8)	(98.1)	(98.1)	(98.1)
#6	229	6,189	6,189	6,189	6,189	13,331	13,331	13,331	13,331
#0	229	(60.7)	(60.7)	(60.7)	(60.7)	(130.7)	(130.7)	(130.7)	(130.7)
	286	7,736	7,736	7,736	7,736	16,665	16,665	16,665	16,665
	286	(75.9)	(75.9)	(75.9)	(75.9)	(163.4)	(163.4)	(163.4)	(163.4)
	200	5,538	6,067	6,319	6,319	11,929	13,068	13,610	13,610
	200	(54.3)	(59.5)	(62.0)	(62.0)	(117.0)	(128.2)	(133.5)	(133.5)
#7	267	8,425	8,425	8,425	8,425	18,146	18,146	18,146	18,146
" "	201	(82.6)	(82.6)	(82.6)	(82.6)	(178.0)	(178.0)	(178.0)	(178.0)
	445	14,041	14,041	14,041	14,041	30,243	30,243	30,243	30,243
	440	(137.7)	(137.7)	(137.7)	(137.7)	(296.6)	(296.6)	(296.6)	(296.6)
	229	6,768	7,412	8,294	8,294	14,574	15,964	17,865	17,865
		(66.4)	(72.7)	(81.3)	(81.3)	(142.9)	(156.6)	(175.2)	(175.2)
#8	305	10,417	11,059	11,059	11,059	22,437	23,820	23,820	23,820
		(102.2)	(108.4)	(108.4)	(108.4)	(220.0)	(233.6)	(233.6)	(233.6)
	508	18,432	18,432	18,432	18,432	39,701	39,701	39,701	39,701
		(180.8)	(180.8)	(180.8)	(180.8)	(389.3)	(389.3)	(389.3)	(389.3)
	257	8,074	8,845	10,213	10,233	17,391	19,051	21,997	22,042
		(79.2)	(86.7)	(100.2)	(100.4)	(170.5)	(186.8)	(215.7)	(216.2)
#9	343	12,431	13,617	13,646	13,646	26,773	29,329	29,390	29,390
		(121.9)	(133.5)	(133.8)	(133.8)	(262.6)	(287.6)	(288.2)	(288.2)
	572	22,743	22,743	22,743	22,743	48,983	48,983	48,983	48,983
	0,2	(223.0)	(223.0)	(223.0)	(223.0)	(480.4)	(480.4)	(480.4)	(480.4)

如需荷載值發展說明,請參閱第 3.1.8 節。

表 7 — 鋼筋的鋼材設計強度1

		SD280-CNS560 ASTM A 615 等級 40 ²			ASTM A 615 等級 60 ²			SD420-CNS560 ASTM A 706 等級 60 ²		
鋼筋尺寸	拉力³ pN _{sa} kgf (kN)	剪力⁴ φV _{sa} kgf (kN)	抗震剪力 ⁵ φV _{sa,eq} kgf (kN)	拉力³ pN _{sa} kgf (kN)	剪力⁴ φV _{sa} kgf (kN)	抗震剪力 ⁵ φV _{sa,eq} kgf (kN)	拉力³ pN _{sa} kgf (kN)	剪力⁴ φV _{sa} kgf (kN)	抗震剪力 ⁵ φV _{sa,eq} kgf (kN)	
#3	1,946	1,077	755	2,595	1,438	1,007	2,994	1,556	1,089	
#3	(19.1)	(10.6)	(7.4)	(25.4)	(14.1)	(9.9)	(29.4)	(15.3)	(10.7)	
#4	3,538	1,960	1,372	4,717	2,613	1,828	5,443	2,830	1,982	
#4	(34.7)	(19.2)	(13.5)	(46.3)	(25.6)	(17.9)	(53.4)	(27.8)	(19.4)	
#5	5,484	3,037	2,125	7,312	4,051	2,835	8,437	4,386	3,071	
#5	(53.8)	(29.8)	(20.8)	(71.7)	(39.7)	(27.8)	(82.7)	(43.0)	(30.1)	
#6	7,784	4,311	3,019	10,378	5,747	4,023	11,975	6,228	4,359	
#0	(76.3)	(42.3)	(29.6)	(101.8)	(56.4)	(39.5)	(117.4)	(61.1)	(42.7)	
#7	10,614	5,879	4,114	14,152	7,838	5,486	16,329	8,491	5,944	
π1	(104.1)	(57.6)	(40.3)	(138.8)	(76.9)	(53.8)	(160.1)	(83.3)	(58.3)	
#8	13,975	7,741	5,418	18,634	10,319	7,223	21,500	11,181	7,827	
#0	(137.0)	(75.9)	(53.1)	(182.7)	(101.2)	(70.8)	(210.8)	(109.6)	(76.8)	
#9	17,690	9,798	6,858	23,587	13,063	9,144	27,216	14,152	9,906	
π.σ	(173.5)	(96.1)	(67.3)	(231.3)	(128.1)	(89.7)	(266.9)	(138.8)	(97.1)	
#10	22,466	12,442	8,709	29,955	16,590	11,614	34,564	17,974	12,583	
#10	(220.3)	(122.0)	(85.4)	(293.8)	(162.7)	(113.9)	(339.0)	(176.3)	(123.4)	

¹ 知需何報道環接説明,請賣関系 3.1.8 節將設計強度值轉換為 ASD 值。
2 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。
3 埋置深度和混凝土抗壓強度之間不允許使用線性內插法。
4 請視需要將表 8 至表 8 的間距、邊距及混凝土厚度係數套用至上述值。對比表 7 中的鋼材數值。將較小的值用於設計。
5 資料適用於溫度範圍 A:最高短期溫度 = 130°F (55°C)、最高長期溫度 = 110°F (43°C)。對於溫度範圍 B::最高短期溫度 = 176°F (80°C)、最高長期溫度 = 110°F (43°C),將上方數值乘以 0.69。混凝土溫度的短期上升是在較時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土溫度會在相當長的一段時間內保持大致恆定。

^{, 4}x2月1日四月15,Y2.此程工州小郎州混凝工际针。 7 表列值僅適用於短期荷載。如需了解長期荷載的數值,包括高架用途,請參閱第 3.1.8 節。 5 表列值僅限於額定重量混凝土。對於輕質混凝土,將設計強度(係數阻力)如下所示乘以入,對於輕質砂混凝土,入。 = 0.51;對於全輕質混凝土,入。 = 0.45。 9 表列值僅限靜態荷載。非開裂混凝土不允許進行抗震設計。對於抗震荷載,將拉力和剪力的開裂混凝土表列值乘以α_{sels} = 0.69。有關地震應用的其他資訊,請參閱第 3.1.8 節。

¹ 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。
2 ASTM A706 等級 60 的鋼筋可視為韌性鋼構件。 ASTM A 615 等級 40 和 60 鋼筋可視為脆性鋼構件。
3 張力 = φN_{si} = φ A_{Sa,N} f_{lata} 如 ACI 318/ CIVIL 401 第 17 章所述。
4 剪力值由使用 φV_{si} < φ 0.60 A_{sa,V} f_{lat} 的靜態剪力測試判定,如 ACI 318/ CIVIL 401 第 17 章所述。
5 地震剪力值由使用 φV_{si} ≤ φ 0.60 A_{sa,V} f_{lat} 的地震剪力測試判定,如 ACI 318/ CIVIL 401 第 17 章所述。
有關地震應用的其他資訊,請參閱第 3.1.8 節。

HIT-RE 500 V3 化學藥劑搭配 HAS-U-T(R2) 螺桿

開裂	或非開裂混凝土		適用鑽孔方式	道	通用混凝土條件
					乾混凝土
			電錘鑽孔搭配碳化鎢鑽頭		水飽和混凝土
	開裂和		电。如果设置了订合自占的外门。如何实现以外	\Box	含水孔洞
	非開裂混凝土				水浸泡孔 (水下)
			喜利得 TE-CD 或 TE-YD 空心鑽頭和 VC 20/40 吸塵器		乾混凝土
		+	鑽石鑽頭搭配 喜利得 TE-YRT 鑿毛工具		水飽和混凝土
Sa UN	非開裂混凝土	45 (5)	鑽石鑽頭		乾混凝土
	非開發混煉工	<u>₹</u> }	3R. H 2K AK		水飽和混凝土

表 8 - 喜利得 HAS-U-T(R2) 螺桿安裝條件

中半次年		かたロボ	/_			螺桿直	[徑, d		
安裝資訊		符號	單位	8	10	12	16	20	24
標準鑽頭直徑	d _o	mm	10	12	14	18	22	28	
有效埋深	最小	h _{ef,min}	mm	60	60	70	79	89	89
· · · · · · · · · · · · · · · · · · ·	最大	h _{ef,max}	mm	160	191	254	318	381	445
直徑	穿透式安裝	6	mm	11	14	16	20¹	24¹	30¹
of fixture hole	預置		mm	9	12	14	18	22	26
安裝扭矩		T _{inst}	Nm	10	20	40	80	136	169
最小混凝土厚度		h _{min}	mm		h _{ef} +30			h _{ef} +2d _o	
最小邊距2		C _{min}	mm	40	48	64	79	95	111
最小錨栓間距		S _{min}	mm	40	48	64	79	95	111

- 1 使用(2)墊圈安裝。見圖5。
- 2 允許 1-3/4 英时44mm 的邊距,前提是安裝扭矩減少至 0.30 T_{inst} (5d < s < 41cm) 以及縮減至 0.5 T_{inst} (s > 41cm)

圖 4 - 喜利得 HAS-U-T(R2) 螺桿

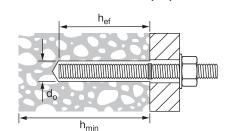


圖 5 — 使用 (2) 墊圈安裝

表 9 — 對於在非開裂混凝土中安裝的螺桿,喜利得 HIT-RE 500 V3 化學藥劑的設計強度與混凝土/黏結破壞1,23,4,5,6,7,8,9,11

			拉力 -	— φN _n	剪力 — φV,					
標準錨栓直徑 (mm)	有效埋深 (mm)	f' _c = 175 kgf/cm ² kgf (kN)	f'_{c} = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' c = 420 kgf/cm kgf (kN)	
	60	1,295	1,417	1,637	2,007	1,395	1,529	1,764	2,161	
<u> </u>		(12.7)	(13.9)	(16.1)	(19.7)	(13.7)	(15.0)	(17.3)	(21.2)	
	86	2,193 (21.5)	2,404 (23.6)	2,774 (27.2)	3,397 (33.3)	4,724 (46.3)	5,175 (50.8)	5,976 (58.6)	7,319 (71.8)	
M10 —		3,377	3,699	4,184	4,631	7,273	7,970	9,011	9,972	
	114	(33.1)	(36.3)	(41.0)	(45.4)	(71.3)	(78.2)	(88.4)	(97.8)	
-		6,201	6,489	6,974	7,718	13,354	13,977	15,018	16,622	
	191	(60.8)	(63.6)	(68.4)	(75.7)	(131.0)	(137.1)	(147.3)	(163.0)	
		1,613	1,767	2,041	2.499	3.475	3.808	4,395	5,384	
	70	(15.8)	(17.3)	(20.0)	(24.5)	(34.1)	(37.3)	(43.1)	(52.8)	
		3,377	3,699	4,273	5,232	7,273	7,970	9,201	11,269	
	114	(33.1)	(36.3)	(41.9)	(51.3)	(71.3)	(78.2)	(90.2)	(110.5)	
M12 –	152	5,200	5,697	6,577	7,954	11,199	12,267	14,166	17,134	
	152	(51.0)	(55.9)	(64.5)	(78.0)	(109.8)	(120.3)	(138.9)	(168.0)	
	254	10,653	11,149	11,979	13,258	22,943	24,013	25,803	28,556	
	254	(104.5)	(109.3)	(117.5)	(130.0)	(225.0)	(235.5)	(253.0)	(280.0)	
	79	1,955	2,141	2,472	3,028	4,209	4,611	5,325	6,523	
	19	(19.2)	(21.0)	(24.2)	(29.7)	(41.3)	(45.2)	(52.2)	(64.0)	
	143	4,720	5,171	5,972	7,312	10,167	11,136	12,859	15,749	
M16 ¹⁰	140	(46.3)	(50.7)	(58.6)	(71.7)	(99.7)	(109.2)	(126.1)	(154.4)	
	191	7,267	7,961	9,192	11,258	15,651	17,146	19,799	24,247	
		(71.3)	(78.1)	(90.1)	(110.4)	(153.5)	(168.1)	(194.2)	(237.8)	
	318	15,635	16,738	17,987	19,906	33,677	36,051	38,739	42,874	
		(153.3)	(164.1)	(176.4)	(195.2)	(330.3)	(353.5)	(379.9)	(420.4)	
	89	2,316	2,538	2,930	3,588	4,990	5,466	6,312	7,729	
-		(22.7) 6,205	(24.9) 6,797	(28.7) 7,849	(35.2) 9,612	(48.9) 13,363	(53.6) 14,640	(61.9) 16,903	(75.8) 20,704	
	171	(60.9)	(66.7)	(77.0)	(94.3)	(131.0)	(143.6)	(165.8)	(203.0)	
M20 ¹⁰		9,553	10,464	12,084	14,798	20,575	22,539	26,025	31.874	
	229	(93.7)	(102.6)	(118.5)	(145.1)	(201.8)	(221.0)	(255.2)	(312.6)	
-		20,555	22,516	24,963	27,626	44,271	48,496	53,767	59,502	
	381	(201.6)	(220.8)	(244.8)	(270.9)	(434.1)	(475.6)	(527.3)	(583.5)	
		2,802	3,069	3.546	4,341	6,036	6,613	7,635	9,350	
	102	(27.5)	(30.1)	(34.8)	(42.6)	(59.2)	(64.9)	(74.9)	(91.7)	
		9,458	10,360	11,945	14,650	20,371	22,316	25,767	31,657	
	229	(92.8)	(101.6)	(117.1)	(143.7)	(199.8)	(218.8)	(252.7)	(310.5)	
M24 ¹⁰	205	14,562	15,952	18,420	22,558	31,363	34,356	39,671	48,588	
	305	(142.8)	(156.4)	(180,.6)	(221.2)	(307.6)	(336.9)	(389.0)	(476.5)	
	508	28,595	31,325	36,170	41,158	61,590	67,468	77,906	88,648	
	506	(280.4)	(307.2)	(354.7)	(403.6)	(604.0)	(661.6)	(764.0)	(869.3)	

3.2.3

表 10 — 對於在開裂混凝土中安裝的螺桿,HIT-RE 500 V3 化學藥劑的設計強度與混凝土/黏結破壞^{1,2,3,4,5,6,7,8,9,11}

			拉力 -	— φN _n			剪力-	— φV _n	
標準錨栓直徑 (mm)	有效埋深 (mm)	$f'_{c} = 175 \text{ kgf/cm}^2$ kgf (kN)	f' c = 210 kgf/cm ² kgf (kN)	f'_c = 280 kgf/cm ² kgf (kN)	f'_c = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	f'_{c} = 210 kgf/cm ² kgf (kN)	f' c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)
	60	916 (9.0)	1,005 (9.9)	1,134 (11.1)	1,204 (11.8)	989 (9.7)	1,082 (10.6)	1,220 (12.0)	1,297 (12.7)
	86	1,501 (14.7)	1,542 (15.1)	1,610 (15.8)	1,710 (16.8)	3,232 (31.7)	3,323 (32.6)	3,468 (34.0)	3,685 (36.1)
M10	114	2,000 (19.6)	2,057 (20.2)	2,148 (21.1)	2,282 (22.4)	4,309 (42.3)	4,429 (43.4)	4,624 (45.3)	4,915 (48.2)
	191	3,334 (32.7)	3,427 (33.6)	3,579 (35.1)	3,803 (37.3)	7,183 (70.4)	7,382 (72.4)	7,707 (75.6)	8,190 (80.3)
	70	1,143 (11.2)	1,252 (12.3)	1,445 (14.2)	1,771 (17.4)	2,461 (24.1)	2,697 (26.4)	3,114 (30.5)	3,812 (37.4)
	114	2,393 (23.5)	2,622 (25.7)	2,839 (27.8)	3,019 (29.6)	5,153 (50.5)	5,645 (55.4)	6,117 (60.0)	6,500 (63.7)
M12	152	3,529 (34.6)	3,626 (35.6)	3,787 (37.1)	4,023 (39.5)	7,600 (74.5)	7,811 (76.6)	8,156 (80.0)	8,668 (85.0)
	254	5,881 (57.7)	6,044 (59.3)	6,312 (61.9)	6,706 (65.8)	12,669 (124.2)	13,020 (127.7)	13,594 (133.3)	14,447 (141.7)
	79	1,383 (13.6)	1,517 (14.9)	1,751 (17.2)	2,145 (21.0)	2,982 (29.2)	3,266 (32.0)	3,772 (37.0)	4,620 (45.3)
	143	3,343 (32.8)	3,663 (35.9)	4,230 (41.5)	4,679 (45.9)	7,201 (70.6)	7,888 (77.4)	9,108 (89.3)	10,077 (98.8)
M16 ¹⁰	191	5,148 (50.5)	5,622 (55.1)	5,869 (57.6)	6,239 (61.2)	11,086 (108.7)	12,109 (118.7)	12,644 (124.0)	13,435 (131.8)
	318	9,117 (89.4)	9,371 (91.9)	9,784 (95.9)	10,396 (102.0)	19,638 (192.6)	20,183 (197.9)	21,074 (206.7)	22,394 (219.6)
	89	1,642 (16.1)	1,798 (17.6)	2,075 (20.4)	2,542 (24.9)	3,533 (34.7)	3,871 (38.0)	4,470 (43.8)	5,475 (53.7)
1.0010	171	4,395 (43.1)	4,815 (47.2)	5,559 (54.5)	6,684 (65.5)	9,466 (92.8)	10,369 (101.7)	11,973 (117.4)	14,397 (141.2)
M20 ¹⁰	229	6,768 (66.4)	7,412 (72.7)	8,387 (82.2)	8,913 (87.4)	14,574 (142.9)	15,964 (156.6)	18,062 (177.1)	19,196 (188.2)
	381	13,025 (127.7)	13,385 (131.3)	13,977 (137.1)	14,853 (145.7)	28,055 (275.1)	28,833 (282.7)	30,105 (295.2)	31,992 (313.7)
	102	1,985 (19.5)	2,173 (21.3)	2,510 (24.6)	3,074 (30.1)	4,275 (41.9)	4,684 (45.9)	5,407 (53.0)	6,624 (65.0)
	229	6,701 (65.7)	7,339 (72.0)	8,474 (83.1)	10,379 (101.8)	14,430 (141.5)	15,806 (155.0)	18,251 (179.0)	22,354 (219.2)
M24 ¹⁰	305	10,314 (101.1)	11,299 (110.8)	13,047 (127.9)	15,561 (152.6)	22,215 (217.9)	24,337 (238.7)	28,100 (275.6)	33,517 (328.7)
ļ	508	20,303 (199.1)	20,941 (205.4)	21,865 (214.4)	23,236 (227.9)	43,729 (428.8)	45,105 (442.3)	47,094 (461.8)	50,047 (490.8)

- 如需荷載值發展說明,請參閱第 3.1.8 節。

- 如將何載值發展說明,請參閱第 3.1.8 節的製計強度值轉換為 ASD 值。 排營開第 3.1.8 節的製計強度值轉換為 ASD 值。 埋置深度和混凝土抗壓強度之間不允許使用線性內插法。 請視需要將表 30 至表 41 的間距、邊距及混凝土厚度係數套用至上述值。對比表 29 中的鋼材數值。將較小的值用於設計。 資料適用於溫度範圍 A:最高短期溫度 = 130°F (55°C)、最高長期溫度 = 110°F (43°C)。 對於溫度範圍 B::最高短期溫度 = 176°F (80°C)、最高長期溫度 = 110°F (43°C),將上方數值乘以 0.69。 混凝土溫度的短期上升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土溫度會在相當長的一段時間內保持大致恆定。 表別值適用的於思視率計畫數率的混凝率其等

- 混凝土温度的短期上升是在較短時間間隔發生的温度上升,例如因日夜循環而導致的温升。長期混凝土温度會在相當長的一段時間內保持大致恆定。表列值適用於乾混凝土或水飽和混凝土條件。對於含水孔的鑽孔,將設計強度乘以 0.45。
 7 表列值僅同於短期荷載。如需了解長期荷載的數值,包括高架用途,請參閱第 3.1.8 節。
 表列值僅適用於短期荷載。如需了解長期荷載的數值,包括高架用途,請參閱第 3.1.8 節。
 表列值僅內於額定重量混凝土。對於輕質混凝土,將設計強度(係數阻力)如下所示乘以 λ、当對於輕質砂混凝土,λ。= 0.51;對於全輕質混凝土,λ。= 0.45。
 9 表列值適用於使用碳化鉛電鏈鐵頭在混凝土鑽的孔洞。開製混凝土不允許使用鑽石鑽孔、備註 10 中所述情况除外。。
 10 在乾燥和水飽和混凝土條件中使用 5/8"、3/4"、7/8"、1" 和 1 1/4" 直徑鐵栓時,可採用臺利得 TE-YRT 打毛工具搭配鑽石鑽孔法進行安裝。請參閱表 28。
 11 表格值僅適用於靜態負載。對於地震荷載,將開裂的混凝土表格中的拉力和剪力值乘以 α。。,如下所示。如需抗震應用的其他資訊,請參閱第 3.1.8 節。
 M10 αN,seis = 0.69
 M12 αN,seis = 0.70
 M16 αN,seis = 0.71
 M20以上 αN,seis = 0.75

表 11 — 對於在非開裂混凝土中安裝的螺桿,在採用鑽石鑽孔搭配 TE-YRT 打毛工具處理鑽孔後,HIT-RE 500 V3化學藥劑設計 強度與混凝土/黏結破壞^{1,2,3,4,5,6,7,8,9}

			拉力 -	— φN _n			剪力 -	— φV _n	
標準錨栓直徑 (mm)	有效埋深 (mm)	f' _c = 175 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)
	70	1,955	2,141	2,472	3,028	4,209	4,611	5,325	6,523
	79	(19.2)	(21.0)	(24.2)	(29.7)	(41.3)	(45.2)	(52.2)	(64.0)
	143	4,720	5,171	5,972	7,196	10,167	11,136	12,859	15,499
M16	143	(46.3)	(50.7)	(58.6)	(70.6)	(99.7)	(109.2)	(126.1)	(152.0)
WITO [191	7,267	7,961	9,192	9,596	15,651	17,146	19,799	20,668
L	191	(71.3)	(78.1)	(90.1)	(94.1)	(153.5)	(168.1)	(194.2)	(202.7)
	318	15,635	15,991	15,991	15,991	33,677	34,446	34,446	34,446
	010	(153.3)	(156.8)	(156.8)	(156.8)	(330.3)	(337.8)	(337.8)	(337.8)
	89	2,316	2,538	2,930	3,588	4,990	5,466	6,312	7,729
		(22.7)	(24.9)	(28.7)	(35.2)	(48.9)	(53.6)	(61.9)	(75.8)
	171	6,205	6,797	7,849	9,612	13,363	14,640	16,903	20,704
M20	17.1	(60.9)	(66.7)	(77.0)	(94.3)	(131.0)	(143.6)	(165.8)	(203.0)
IVIZO	229	9,553	10,464	12,084	13,317	20,575	22,539	26,025	28,683
	229	(93.7)	(102.6)	(118.5)	(130.6)	(201.8)	(221.0)	(255.2)	(281.3)
	286	13,349	14,624	16,647	16,647	28,755	31,500	35,854	35,854
	200	(130.9)	(143.4)	(163.2)	(163.2)	(282.0)	(308.9)	(351.6)	(351.6)
	102	2,802	3,069	3,546	4,341	6,036	6,613	7,635	9,350
L	102	(27.5)	(30.1)	(34.8)	(42.6)	(59.2)	(64.9)	(74.9)	(91.7)
	229	9,458	10,360	11,945	14,650	20,371	22,316	25,767	31,657
M24	223	(92.8)	(101.6)	(117.1)	(143.7)	(199.8)	(218.8)	(252.7)	(310.5)
17124	305	14,562	15,952	18,420	21,580	31,363	34,356	39,671	46,457
		(142.8)	(156.4)	(180.6)	(211.6)	(307.6)	(336.9)	(389.0)	(455.6)
	480	28,595	31,325	33,104	33,104	31,590	37,468	71,300	71,300
	400	(280.4)	(307.2)	(324.6)	(324.6)	(604.0)	(661.6)	(699.2)	(699.2)

- 1 如需荷載值發展說明,請參閱第 3.1.8 節。
- 2 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。
- 3 埋置深度和混凝土抗壓強度之間不允許使用線性內插法。
- 4 請視需要將表 30 至表 41 的間距、邊距及混凝土厚度係數套用至上述值。對比表 29 中的鋼材數值。將較小的值用於設計。
- 5 資料適用於溫度範圍 A:最高短期溫度 = 130°F (55°C)、最高長期溫度 = 110°F (43°C)。
- 對於溫度範圍 B::最高短期溫度 = 176°F (80°C)、最高長期溫度 = 110°F (43°C),將上方數值乘以 0.69。
- 混凝土温度的短期上升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土溫度會在相當長的一段時間內保持大致恆定。
- 6 表格值適用於乾燥或水飽和的記擬主條件。 這種穿透式安裝方法不允許浸水孔和水下應用。 7 表列值僅適用於短期荷載。如需了解長期荷載的數值,包括高架用途,請參閱第 3.1.8 節。
- 予入公司 (東京) (1477年) (1477年)

表 12 — 對於在開裂混凝土中安裝的螺桿,在採用鑽石鑽孔搭配 TE-YRT 打毛工具處理鑽孔後,HIT-RE 500 V3化學藥劑設計強度 與混凝土/黏結破壞1,2,3,4,5,6,7,8,9

			拉力 -	— φN _n			剪力 -	— φV _n	
標準錨栓直徑 (mm)	有效埋深 (mm)	f' _c = 175 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	(f 1'45. 03 0 kgf/cm² kgf (kN)
	79	1,383 (13.6)	1,517 (14.9)	1,592 (15.6)	1,592 (15.6)	2,982 (29.2)	3,266 (32.0)	3,429 (33.6)	3,429 (33.6)
M16	143	2,867 (28.1)	2,867 (28.1)	2,867 (28.1)	2,867 (28.1)	6,171 (60.5)	6,171 (60.5)	6,171 (60.5)	6,171 (60.5)
IVITO	191	3,822 (37.5)	3,822 (37.5)	3,822 (37.5)	3,822 (37.5)	8,230 (80.7)	8,230 (80.7)	8,230 (80.7)	8,230 (80.7)
	318	6,368 (62.5)	6,368 (62.5)	6,368 (62.5)	6,368 (62.5)	13,717 (134.5)	13,717 (134.5)	13,717 (134.5)	13,717 (134.5)
	89	1,642 (16.1)	1,798 (17.6)	2,075 (20.4)	2,127 (20.9)	3,533 (34.7)	3,871 (38.0)	4,470 (43.8)	4,581 (44.9)
M20	171	4,103 (40.2)	4,103 (40.2)	4,103 (40.2)	4,103 (40.2)	8,838 (86.7)	8,838 (86.7)	8,838 (86.7)	8,838 (86.7)
M20 -	229	5,470 (53.6)	5,470 (53.6)	5,470 (53.6)	5,470 (53.6)	11,782 (115.5)	11,782 (115.5)	11,782 (115.5)	11,782 (115.5)
	286	6,838 (67.1)	6,838 (67.1)	6,838 (67.1)	6,838 (67.1)	14,728 (144.4)	14,728 (144.4)	14,728 (144.4)	14,728 (144.4)
	102	1,985 (19.5)	2,173 (21.3)	2,510 (24.6)	3,074 (30.1)	4,275 (41.9)	4,684 (45.9)	5,407 (53.0)	6,624 (65.0)
MOA	229	6,690 (65.6)	6,867 (67.3)	6,867 (67.3)	6,867 (67.3)	14,410 (141.3)	14,790 (145.0)	14,790 (145.0)	14,790 (145.0)
M24	305	9,145 (89.7)	9,145 (89.7)	9,145 (89.7)	9,145 (89.7)	19,698 (193.2)	19,698 (193.2)	19,698 (193.2)	19,698 (193.2)
	480	14,393 (141.1)	14,393 (141.1)	14,393 (141.1)	14,393 (141.1)	31,000 (304.0)	31,000 (304.0)	31,000 (304.0)	31,000 (304.0)

- 1 如需荷載值發展說明,請參閱第 3.1.8 節。
- 2 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。
- 3 埋置深度和混凝土抗壓強度之間不允許使用線性內插法。
- 4 請視需要將表 30 至表 41 的間距、邊距及混凝土厚度係數套用至上述值。對比表 29 中的鋼材數值。將較小的值用於設計。
- 5 資料適用於溫度範圍 A:最高短期溫度 = 130°F (55°C)、最高長期溫度 = 110°F (43°C)。
- 對於溫度範圍 B::最高短期溫度 = 176°F (80°C)、最高長期溫度 = 110°F (43°C),將上方數值乘以 0.69。
- 混凝土溫度的短期上升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土溫度會在相當長的一段時間內保持大致恆定。
- 6 表格值適用於乾燥或水飽和的混凝土條件。 這種穿透式安裝方法不允許浸水孔和水下應用。
- 7 表列值僅適用於短期荷載。如需了解長期荷載的數值,包括高架用途,請參閱第 3.1.8 節。
- 8 表列值僅限於額定重量混凝土。對於輕質混凝土,將設計強度如下所示乘以 λ_a :對於輕質砂混凝土, $\lambda_a=0.51$;對於全輕質混凝土, $\lambda_a=0.45$ 。
- 9 表列值僅適用於靜態荷載。非開裂混凝土不容許採用抗震設計。如需得出抗震荷載,請將開裂混凝土的表列拉力和剪力值乘以 🗘 = 0.75。如需抗震應用的其他資訊,請參閱第 3.1.8 節。

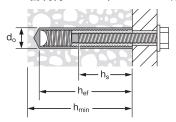
表 13 — Hilti HAS-U-T& HAS-U-T R2 螺桿的鋼材設計強度

	1	HAS-U-T 碳鋼螺桿 (5.8 級	HAS-U-T R2不銹鋼螺桿				
標準錨栓直徑	拉力 φN _{sa} kgf (kN)	剪力 φV _{sa} kgf (kN)	抗震剪力 φV _{sa,eq} kgf (kN)	拉力 φN _{sa} kgf (kN)	剪力 φV _{sa} kgf (kN)	抗震剪力 φV _{sa,eq} kgf (kN)	
M10	18.9	8.7	6.1	26.0	14.4	10.1	
M12	27.3	15.3	10.7	37.8	20.9	14.7	
M16	51.0	28.2	19.7	70.4	39.0	27.3	
M20	79.6	44.1	30.9	93.3	51.7	36.2	
M24	114.7	63.6	44.5	134.5	74.5	52.1	

- 1 不允許在埋入深度與混凝土的抗壓強度之間進行線性計算。若有不同設計條件,請使用喜利得錨栓設計軟體 PROFIS Engineering。 2 表中數值為單根錨栓數值,且未折減邊距、錨栓間距或混凝土厚度。表7表8需與表9 的鋼材數值比較。以數值較小者為準。如遇較複雜的錨栓設計,請使用喜利得錨栓設計軟體 PROFIS Engineering。 3 資料適用於溫度範圍 A:最大短期溫度 = 55°C,最大長期溫度 = 43°C。

- 3 具件週刊於.血及範囲 A. 取入还对曲度 33 区,取入代对油度 43 区。 4 表中數值適用於較或水飽和混凝土條件。如需用於其他條件,請洽詢喜利得工程師。 5 表中的數值僅適用於標準配比的混凝土。如需用於輕型混凝土,請洽詢喜利得工程師。
- る 表中数值適用於使用論鋼電鐵鐵頭鑽鑿的混造土鑽孔。有關開製混凝土條件下的礦石鑽孔,請洽詢喜利得工程師。 7 如需耐震負載資訊,請洽詢喜利得工程師。

HIT-RE 500 V3 化學藥劑搭配 HIS-N 和 HIS-RN 內牙螺桿


圖 7 — 喜利得 HIS-N 和 HIS-RN 內牙螺桿安裝條件

開裂或非開裂混凝土	許可鑽孔方式	許可混凝土條件
		乾混凝土
		◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
開裂和	電錘鑽孔搭配碳化鎢鑽頭	含水孔洞
非開裂混凝土		水浸泡孔 (水下)
	喜利得 TE-CD 或 TE-YD 空心鑽頭	乾混凝土
	貸 貸	◇◇◇◇◇ 水飽和混凝土
非開裂混凝土	鑽石空心鑽頭	乾混凝土
干用较加燥工	だ	◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

表 14 — HIS-N 和 HIS-RN 規範

安裝資訊		符號	單位	單位						
艾 表貝矶		1寸5版		M8	M10	M12	M16	M20		
內牙螺桿外部直徑			mm	12.5	16.5	20.5	25.4	27.6		
標準鑽頭直徑		d _o	mm	14	17	22	29	32		
有效埋深		h _{ef}	mm	90	110	125	170	205		
內螺紋長度	最短	b	mm	8	10	12	16	20		
內錄似反反	最長	h _s	mm	20	25	30	40	50		
安裝扭矩		T _{inst}	Nm	10	20	40	81	136		
最小混凝土厚度		h _{min}	mm	120	150	170	230	270		
最小邊距		C _{min}	mm	63	83	102	127	140		
最短錨栓間距		S _{min}	mm	63	83	102	127	140		

圖 8 — 喜利得 HIS-N 和 HIS-RN 規範

表 15 — 喜利得 HIT-RE 500 V3 搭配喜利得 HIS-N 和 HIS-RN 使用時的化學藥劑設計強度與混凝土/黏結破壞 非開裂混凝土中的內牙螺桿1,2,3,4,5,6,7,8,9,11

_												
				拉力 -	— φN _n		剪力 — φV _n					
		有效埋深	$f'_{c} = 175 \text{ kgf/cm}^{2}$	$f'_{c} = 210 \text{ kgf/cm}^{2}$	f' = 280 kgf/cm ²	$f'_{c} = 420 \text{ kgf/cm}^{2}$	f' = 175 kgf/cm ²	$f'_{c} = 210 \text{ kgf/cm}^{2}$	f' = 280 kgf/cm ²	f' = 420 kgf/cm ²		
	螺紋尺寸	(mm)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)		
_	M10	111	3,239	3,547	4,096	5,017	6,974	7,638	8,820	10,802		
	IVITO	111	(31.8)	(34.8)	(40.2)	(49.2)	(68.4)	(74.9)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(105.9)		
	M12	127	3,955	4,334	5,003	6,128	8,521	9,333	10,777	13,200		
	IVITZ	127	(38.8)	(42.5)	(49.1)	(60.1)	(83.6)	(91.5)	f (kN) kgf (kN) kgf (l), 638 8,820 10,8 (4.9) (86.5) (105,333 10,777 13,2 (10.5) (105.7) (129,4,640 16,903 20,7 43.6) (165.8) (203,9,332 22,324 27,3	(129.4)		
	M16	171	6,205	6,797	7,849	9,612	13,363	14,640	16,903	20,704		
		171	(60.9)	(66.7)	(77.0)	(94.3)	(131.0)	(143.6)	f' _c = 280 kgf/cm ² f' _c = 42 kgf (kN) f' _c	(203.0)		
	M20	206	8,194	8,977	10,365	12,694	17,649	19,332	22,324	27,340		
_	14120	200	(80.4)	(88.0)	(101.6)	(124.5)	(173.1)	(189.6)	(218.9)	(268.1)		

表 16 — 對於在開裂混凝土中安裝的喜利得 HIS-N 和 HIS-RN 內牙螺桿, 喜利得 HIT-RE 500 V3 化學藥劑的設計強度與混凝土 / 黏結破壞1,2,3,4,5,6,7,8,9,11

		拉力 — φN _n				剪力 — φV _n				
螺紋尺寸	有效埋深 (mm)	$f'_{c} = 175 \text{ kgf/cm}^2$ kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f'_{c} = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	f'_c = 210 kgf/cm ² kgf (kN)	f' c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	
M10	111	2,293 (22.5)	2,513 (24.6)	2,901 (28.4)	3,214 (31.5)	4,940 (48.4)	5,411 (53.1)	6,248 (61.3)	6,922 (67.9)	
M12	127	2,801 (27.5)	3,069 (30.1)	3,545 (34.8)	4,341 (42.6)	6,035 (59.2)	6,611 (64.8)	7,634 (74.9)	9,349 (91.7)	
M16	171	4,395 (43.1)	4,815 (47.2)	5,559 (54.5)	6,808 (66.8)	9,466 (92.8)	10,369 (101.7)	11,973 (117.4)	14,665 (143.8)	
M20	206	5,804 (56.9)	6,357 (62.3)	7,341 (72.0)	8,992 (88.2)	12,501 (122.6)	13,694 (134.3)	15,812 (155.1)	19,366 (189.9)	

- 1 請參閱第 3.1.8 節,了解荷載值的制定說明。
- 2 請參閱第 3.1.8 節將設計強度(係數阻力)值轉換為 ASD 值。
- 3 不允許埋置深度和混凝土抗壓強度之間的線性內插法。
- 4 視需要將表 50 和 51 的間距、邊距及混凝土厚度係數應用於上方值。與表 49 中的鋼材數值進行比較。較小的值會用於設計。
- 5 資料適用於溫度範圍 A:最高短期溫度 = 130° F (55° C)、最高長期溫度 = 110° F (43° C)。
- 對於溫度範圍 B: 最高短期溫度 = 176° F (80° C)、最高長期溫度 = 110° F (43° C),將上方值乘以 0.69
- 混凝土溫度的短期提升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土溫度會在相當長的一段時間內保持大致恆定。
- 6 表列值適用於乾混凝土和水飽和混凝土條件。
- 對於含水孔,設計強度乘以 0.52。
- 對於水浸泡孔(水下)應用,將設計強度乘以 0.46。
- 7 表列值僅限短期荷載。對於倒吊施工等可持續荷載,請參閱第 3.1.8 節。 8 表列值僅限於額定重量混凝土。對於輕質混凝土,將設計強度如下所示乘以入。: 對於輕質砂混凝土,入。= 0.51;對於全輕質混凝土,入。= 0.45。
- 9 表列值適用於使用碳化鎬電鎚鑽頭在混凝土鑽的孔洞。開裂混凝土不允許使用鑽石空心鑽孔,除非備註 10 中另有說明。對於鑽石非開裂混凝土中的應用。
- 10 在非開裂和開裂混凝土(乾混凝土和水飽和混凝土)中,允許使用鑽石空心鑽頭搭配喜利得 TE-YRT 打毛工具安裝 1/2-13 UNC、5/8-11 UNC 及 3/4-10 UNC 錨栓。請參閱表 47 和 48。
- 11 表列值僅限靜態荷載。非開裂混凝土不允許進行抗震設計。對於抗震荷載,將拉力和剪力的開裂混凝土表列值乘以 🚓 = 0.75。有關地震應用的其他資訊,請參閱第 3.1.8 節。

表 17 — 對於在非開裂混凝土中安裝的喜利得 HIS-N 和 HIS-RN 內牙螺桿,在採用鑽石空心鑽頭搭配 TE-YRT 打毛工具處理鑽孔 後, 喜利得 HIT-RE 500 V3 化學藥劑的設計強度與混凝土 / 黏結破壞^{1,2,3,4,5,6,7,8}

	7, -1111										
			拉力 -	— φN _n		剪力 — φV _n					
螺紋尺寸	有效埋深 (mm)	f'c = 175 kgf/cm ² kgf (kN)	f'_c = 210 kgf/cm ² kgf (kN)	f'_c = 280 kgf/cm ² kgf (kN)	f'_{c} = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	f'_{c} = 210 kgf/cm ² kgf (kN)	f'_c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)		
M12	127	3,955	4,334	5,003	6,128	8,521	9,333	10,777	13,200		
IVITZ	127	(38.8)	(42.5)	(49.1)	(60.1)	(83.6)	(91.5)	(105.7)	(129.4)		
M16	171	6,205	6,797	7,849	9,612	13,363	14,640	16,903	20,704		
	171	(60.9)	(66.7)	(77.0)	(94.3)	(131.0)	(143.6)	f' _c = 280 kgf/cm ² f' _c kgf (kN) 10,777 (105.7)	(203.0)		
M20	206	8,194	8,977	10,365	12,694	17,649	19,332	22,324	27,340		
10120	200	(80.4)	(88.0)	(101.6)	(124.5)	(173.1)	(189.6)	(218.9)	(268.1)		

表 18 — 對於在非開裂混凝土中安裝的喜利得 HIS-N 和 HIS-RN 內牙螺桿,在採用鑽石空心鑽搭配 TE-YRT 打毛工具處理鑽孔 後, 喜利得 HIT-RE 500 V3 化學藥劑的設計強度與混凝土 /黏結破壞^{1,2,3,4,5,6,7,8,9}

			拉力 -	— φN _n		剪力 — φV _n				
螺紋尺寸	有效埋深 (mm)	f'_{c} = 175 kgf/cm ² kgf (kN)	$f'_c = 210 \text{ kgf/cm}^2 \text{ kgf (kN)}$	f' c = 280 kgf/cm ² kgf (kN)	f'_{c} = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	f'_{c} = 210 kgf/cm ² kgf (kN)	f'_c = 280 kgf/cm ² kgf (kN)	f' = 420 kgf/cm ² kgf (kN)	
M12	127	2,801 (27.5)	2,815 (27.6)	2,815 (27.6)	2,815 (27.6)	6,035 (59.2)	6,060 (59.4)	6,060 (59.4)	6,060 (59.4)	
M16	171	4,395 (43.1)	4,690 (46.0)	4,690 (46.0)	4,690 (46.0)	9,466 (92.8)	10,099 (99.0)	10,099 (99.0)	10,099 (99.0)	
M20	206	5,804 (56.9)	6,153 (60.3)	6,153 (60.3)	6,153 (60.3)	12,501 (122.6)	13,252 (130.0)	13,252 (130.0)	13,252 (130.0)	

- 1 請參閱第 3.1.8 節,了解荷載值的制定說明。
- 2 請參閱第 3.1.8 節將設計強度(係數阻力)值轉換為 ASD 值。
- 3 不允許埋置深度和混凝土抗壓強度之間的線性內插法。
- 4 視需要將表 50 和 51 的間距、邊距及混凝土厚度係數應用於上方值。與表 49 中的鋼材數值進行比較。較小的值會用於設計。
- 5 資料適用於溫度範圍 A:最高短期溫度 = 130° F (55° C)、最高長期溫度 = 110° F (43° C)。

對於溫度範圍 B: 最高短期溫度 = 176° F (80° C)、最高長期溫度 = 110° F (43° C) 將上方值乘以 0.69

- 混凝土溫度的短期提升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土溫度會在相當長的一段時間內保持大致恆定。
- 6 表格值適用於乾燥或水飽和的混凝土條件。 這種穿透式安裝方法不允許浸水孔和水下應用。
- 7 表列值僅限短期荷載。對於倒吊施工等可持續荷載,請參閱第 3.1.8 節。
- 8 表列值僅限於額定重量混凝土。對於輕質混凝土,將設計強度如下所示乘以入。: 對於輕質砂混凝土,入。= 0.51;對於全輕質混凝土,入。= 0.45。
- 9 表列值僅限靜態荷載。非開裂混凝土不允許進行抗震設計。對於地震荷載,將拉力和剪力的開裂混凝土表列值乘以 α cole = 0.75. 有關地震應用的其他資訊,請參閱第 3.1.8 節。

表 19 — 喜利得 HIS-N 和 HIS-RN 內牙螺桿的鋼質螺栓 / 螺絲的鋼材設計強度^{1,2,3}

		ASTM A 193 B7		ASTM A 193 Grade B8M stainless steel							
螺紋尺寸	拉力⁴ φN _{sa} kgf (kN)	剪力 ⁵ φV _{sa} kgf (kN)	抗震剪力 ⁶ φV _{sa,eq} kgf (kN)	拉力⁴ φN _{sa} kgf (kN)	剪力⁵ φV _{sa} kgf (kN)	抗震剪力 ⁶ φV _{sa,eq} kgf (kN)					
M10	2,858	1,583	1,109	2,513	1,393	975					
IVITO	(28.0)	(15.5)	(10.9)	(24.6)	(13.7)	(9.6)					
M12	4,774	2,896	2,028	4,602	2,549	1,785					
IVI I Z	(46.8)	(28.4)	(19.9)	(45.1)	(25.0)	(17.5)					
M16	7,938	4,613	3,230	7,330	4,060	2,842					
M16	(77.8)	(45.2)	(31.7)	(71.9)	(39.8)	(27.9)					
MOO	8,067	6,829	4,781	10,848	6,008	4,205					
M20	(79.1)	(67.0)	(46.9)	(106.4)	(58.9)	(41.2)					

- 1 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。
- 2 具有鋼質螺栓的 Hilti HIS-N 和 HIS-RN 內牙螺桿可視為脆性鋼質元件。
- 3 表列值是指 HIS-N 內牙螺桿的鋼材破壞值和插入的鋼質螺栓的鋼材破壞值中的較小者。

- 張力 = ϕ N_{sa} = ϕ A_{sa,N} f_{tra} , 如 ACI 318/ CIVIL 401 第 17 章所述。 剪力值由使用 ϕ V_{sa} < ϕ 0.60 A_{sa,V} f_{tra} 的靜態剪力測試判定,如 ACI 318/ CIVIL 401 第 17 章所述。 地震剪力值由使用 ϕ V_{sa} < ϕ 0.60 A_{sa,V} f_{tra} 的地震剪力測試判定,如 ACI 318/ CIVIL 401 第 17 章所述。 有關地震應用的其他資訊,請參閱第 3.1.8 節。

3.2.4 HIT-RE 100 黏結型錨栓系統

產品介紹

空心鑽頭

非開裂混凝土 開裂混凝土

填充水泥漿的 混凝土砌塊

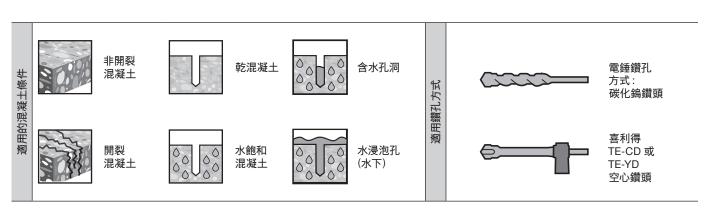
抗震設計類別 A-F

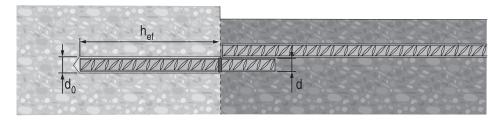
Profis Engineering 錨栓設計軟體

列名認證/核准	
ICC-ES (國際規範委員會)	ESR-3829
NSF/ANSI 標準 61	在飲用水中使用 HIT-RE 100 的認證
洛杉磯市	洛杉磯市 2017 年 LABC 補充說明 (符合 ESR-3829 標準)
獨立規範評估	IBC®/IRC® 2018 (ICC-ES AC308/ACI 355.4) IBC®/IRC® 2015 (ICC-ES AC308/ACI 355.4) IBC®/IRC® 2012 (ICC-ES AC308/ACI 355.4) IBC®/IRC® 2009 (ICC-ES AC308) LEED®: Credit 4.1-低汙染材料

用於混凝土的設計資料符合 ACI 318 標準

ACI 318/土木 401


本節所包含的荷載值為喜利得簡化設計表。本節荷載表係使用強度設計參數和 ESR-3829 變量, 以及 ACI 318/土木 401 第 17 章內 的公式制定而成。


錨栓緊固技術指引

如需其他資訊或技術協助, 請致電 0800-221036 與喜利得聯絡。

喜利得 HIT-RE 100 化學藥劑搭配竹節鋼筋

表 1 - 使用 HIT-RE 100 化學藥劑安裝鋼筋的規範

火・ 火/ 13	1111 ILE 10	<u> </u>	月1天 农町	カルHングし手じ							
安裝資訊		符號	單位	鋼筋尺寸							
		1寸5狀	単1型	3	4	5	6	7	8	9	10
標準鑽頭直徑		d _o	mm	12.7	16	19	25	28	32	36	40
± 26.49.20	minimum	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
有效埋深	maximum	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
最小混凝土厚度		h _{min}	(mm)	(h _{ef}	+ 30)			h _{ef} +	- 2d _o		
最小邊距1		C _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(143)	(159)
最短錨栓間距		S _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(143)	(159)
	\		- ITT ++ II b AK								

¹ 允許 1-3/4 英吋 (44 mm) 的邊距, 前提是鋼筋保持未扭轉狀態。

附註:上方表 1 安裝規範和表 2 至表 20 的資料適用於喜利得 HIT-RE 100 搭配鋼筋的使用,其按照 ACI318/土木 401 第 17 章的規定設計為後置錨栓。如需了解根據 ACI318/土木 401 第 25 章 (原 ACI 318-11 第 12 章) 將喜利得 HIT-RE 100 搭配鋼筋進行典型開發計算的使用情況, 請參閱第 3.1.14 節 (2019 PTG) 的設計方式, 以及本文件結尾的表 57 至表 66。

75

表 2 — 對於在非開裂混凝土中安裝的鋼筋, 喜利得 HIT-RE 100 化學藥劑的設計強度與混凝土/ 黏結破壞 1,2,3,4,5,6,7,8,9,10

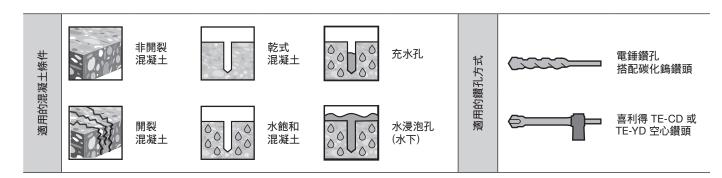
	郑中和山水		拉力 -						
鋼筋	有效埋置深度	£'	1	···	£'	£'			£'
尺寸	有双垤鱼床反 mm	f´c = 175 kgf/cm² kgf (kN)	f´c = 210 kgf/cm² kgf (kN)	f´c = 280 kgf/cm² kgf (kN)	f'_c = 420 kgf/cm ² kgf (kN)	f´。 = 175 kgf/cm² kgf (kN)	f´c = 210 kgf/cm² kgf (kN)	f´c = 280 kgf/cm² kgf (kN)	f'_c = 420 kgf/cm ² kgf (kN)
	86	1,261 (12.4)	1,286 (12.6)	1,322 (13.0)	1,377 (13.5)	3,211 (31.5)	3,270 (32.1)	3,366 (33.0)	3,506 (34.4)
#3	114	1,683 (16.5)	1,712 (16.8)	1,762 (17.3)	1,837 (18.0)	4,282 (42.0)	4,361 (42.8)	4,488 (44.0)	4,674 (45.8)
	191	2,803 (27.5)	2,855 (28.0)	2,939 (28.8)	3,059 (30.0)	7,137 (70.0)	7,269 (71.3)	7,480 (73.4)	7,790 (76.4)
	114	2,216 (21.7)	2,257 (22.1)	2,322 (22.8)	2,418 (23.7)	5,638 (55.3)	5,742 (56.3)	5,910 (58.0)	6,153 (60.3)
#4	152	2,953 (29.0)	3,007 (29.5)	3,096 (30.4)	3,223 (31.6)	7,518 (73.7)	7,654 (75.1)	7,879 (77.3)	8,205 (80.5)
	254	4,921 (48.3)	5,012 (49.2)	5,160 (50.6)	5,373 (52.7)	12,528 (122.9)	12,760 (125.1)	13,131 (128.8)	13,676 (134.1)
	143	3,318 (32.5)	3,379 (33.1)	3,477 (34.1)	3,622 (35.5)	8,444 (82.8)	8,600 (84.3)	8,852 (86.8)	9,217 (90.4)
#5	191	4,423 (43.4)	4,504 (44.2)	4,636 (45.5)	4,828 (47.4)	11,260 (110.4)	11,467 (112.5)	11,800 (115.7)	12,290 (120.5)
	318	7,373 (72.3)	7,507 (73.6)	7,727 (75.8)	8,047 (78.9)	18,765 (184.0)	19,110 (187.4)	19,668 (192.9)	20,482 (200.9)
	171	4,618	4,704	4,840 (47.5)	5,042 (49.4)	11,757	11,973	12,322 (120.8)	12,832 (125.8)
#6	229	(45.3) 6,158	(46.1) 6,271	6,455	6,722	(115.3) 15,674	(117.4) 15,964	16,429	17,109
	381	(60.4) 10,263	(61.5) 10,453	(63.3) 10,757	(65.9) 11,201	(153.7) 26,125	(156.6) 26,605	(161.1)	(167.8) 28,515
	200	(100.6) 6,071	(102.5) 6,182	(105.5) 6,362	(109.8) 6,625	(256.2) 15,452	(260.9) 15,735	(268.5) 16,196	(279.6) 16,865
#7	267	(59.5) 8,094	(60.6) 8,242	(62.4) 8,482	(65.0) 8,834	(151.5) 20,602	(154.3) 20,981	(158.8) 21,593	(165.4) 22,487
	445	(79.4) 13,490	(80.8) 13,737	(83.2) 14,138	(86.6) 14,724	(202.0) 34,337	(205.8) 34,967	(211.8) 35,988	(220.5) 37,478
	229	(132.3) 7,702	(134.7) 7,845	(138.7) 8,074	(144.4) 8,407	(336.7) 19,607	(342.9) 19,967	(352.9) 20,550	(367.5) 21,400
#8	305	(75.5) 10,269	(76.9) 10,460	(79.2) 10,764	(82.4) 11,211	(192.3) 26,143	(195.8) 26,624	(201.5) 27,401	(209.9) 28,535
	508	(100.7) 17,116	(102.6) 17,432	(105.6) 17,942	(109.9) 18,683	(256.4) 43,570	(261.1) 44,373	(268.7) 45,668	(279.8) 47,557
	257	(167.9) 9,535	9,709	(175.9) 9,993	(183.2) 10,408	(427.3) 24,269	(435.1) 24,716	(447.8) 25,437	(466.4) 26,490
#9	343	(93.5) 12,712	(95.2) 12,946	(98.0) 13,324	(102.1) 13,875	(238.0) 32,359	(242.4) 32,956	(249.5) 33,917	(259.8) 35,321
0	572	(124.7) 21,187	(127.0) 21,577	(130.7) 22,208	(136.1) 23,126	(317.3) 53,932	(323.2) 54,925	(332.6) 56,527	(346.4) 58,867
	286	(207.8) 11,551	(211.6)	(217.8) 12,106	(226.8) 12,608	(528.9) 28,755	(538.6) 29,942	(554.3)	(577.3)
#10	381	(113.3) 15,402	(115.4) 15,683	(118.7) 16,141	(123.6) 16,810	(282.0)	(293.6)	(302.2) 41,089	(314.7) 42,790
	635	(151.0) 25,669 (251.7)	(153.8) 26,141 (256.3)	(158.3) 26,903 (263.8)	(164.9) 28,016 (274.7)	(384.4) 65,335 (640.7)	(391.5) 66,537 (652.5)	(402.9) 68,481 (671.6)	(419.6) 71,314 (699.3)

- 請參閱第 3.1.8 節(2019 PTG),了解荷載值的制定說明。 請參閱第 3.1.8.6 節(2019 PTG) 將設計強度值轉換為 ASD 值。 不允許埋置深度和混凝土抗壓強度之間的線性內插法。
- 3 不允許埋置深度和混凝土抗壓強度之間的線性內插法。
 4 視需要應用表 5 至表 20 的間距、邊距及混凝土厚度係數。與表 4 中的鋼材數值進行比較。較小的值會用於設計。
 5 數值適用於下列溫度範圍:最高短期溫度 = 130°F (55°C)、最高長期溫度 = 110°F (43°C)。混凝土溫度的短期提升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土溫度會在相當長的一段時間內保持大致恆定。
 6 表格值適用於於遲混凝土條件。對於水飽和混凝土、含水孔或水下應用,將設計強度乘以 0.61。
 7 表列值僅限短期荷載。對於倒吊施工等可持續荷載的資訊,請參閱第 3.1.8.8 節(2019 PTG)。
 8 表列值僅限短期荷載。對於輕質混凝土,將設計強度如下所示乘以 λ₂:對於輕質砂混凝土,λ₂ = 0.51;對於全輕質混凝土,λ₂ = 0.45。
 9 表列值適用於使用碳化鍋電鎚鑽頭在混凝土鑽的孔洞。不允許使用鑽石空心鑽孔。

表 3 — 對於在開裂混凝土中安裝的鋼筋, 喜利得 HIT-RE 100 化學藥劑的設計強度與混凝土/黏結破壞 1,2,3,4,5,6,7,8,9,10

			拉力 -	— φ <i>N</i> _n			剪力 — φV _n			
鋼筋 尺寸	有效埋置深度 mm	f´c = 175 kgf/cm² kgf (kN)	f´c = 210 kgf/cm² kgf (kN)	f' = 280 kgf/cm² kgf (kN)	f´c = 420 kgf/cm² kgf (kN)	$f'_{c} =$ 175 kgf/cm ² kgf (kN)	f´c = 210 kgf/cm² kgf (kN)	f´c = 280 kgf/cm² kgf (kN)	f ' c = 420 kgf/cm kgf (kN)	
	86	472	481	494	515	1,202	1,225	1,259	1,311	
		(4.6)	(4.7)	(4.8)	(5.0)	(11.8)	(12.0)	(12.3)	(12.9)	
#3	114	630	642	660	687	1,603	1,633	1,681	1,749	
π0	114	(6.2)	(6.3)	(6.5)	(6.7)	(15.7)	(16.0)	(16.5)	(17.1)	
	191	1,050	1,068	1,100	1,145	2,672	2,719	2,799	2,914	
	131	(10.3)	(10.5)	(10.8)	(11.2)	(26.2)	(26.7)	(27.4)	(28.6)	
	114	839	855	880	916	2,136	2,175	2,238	2,331	
	114	(8.2)	(8.4)	(8.6)	(9.0)	(21.0)	(21.3)	(22.0)	(22.9)	
#4	152	1,118	1,141	1,173	1,222	2,849	2,901	2,987	3,109	
#4	152	(11.0)	(11.2)	(11.5)	(12.0)	(27.9)	(28.4)	(29.3)	(30.5)	
	254	1,864	1,901	1,955	2,037	4,749	4,835	4,976	5,182	
	254	(18.3)	(18.6)	(19.2)	(20.0)	(46.6)	(47.4)	(48.8)	(50.8)	
	440	1,311	1,336	1,374	1,431	3,338	3,400	3,499	3,645	
	143	(12.9)	(13.1)	(13.5)	(14.0)	(32.7)	(33.3)	(34.3)	(35.7)	
	404	1,749	1,780	1,833	1,910	4,452	4,534	4,665	4,858	
#5	191	(17.1)	(17.5)	(18.0)	(18.7)	(43.7)	(44.5)	(45.7)	(47.6)	
	242	2,914	2,969	3,055	3,182	7,418	7,555	7,777	8,097	
	318	(28.6)	(29.1)	(30.0)	(31.2)	(72.8)	(74.1)	(76.3)	(79.4)	
		1,889	1,923	1,980	2,062	4,808	4,897	5,039	5,248	
	171	(18.5)	(18.9)	(19.4)	(20.2)	(47.2)	(48.0)	(49.4)	(51.5)	
		2,517	2,565	2,640	2,749	6,409	6,527	6,718	6,997	
#6	229	(24.7)	(25.2)	(25.9)	(27.0)	(62.9)	(64.0)	(65.9)	(68.6)	
		4,198	4,275	4,400	4,581	10,684	10,879	11,197	11,660	
	381	(41.2)	(41.9)	(43.1)	(44.9)	(104.8)	(106.7)	(109.8)	(114.3)	
		2,570	2,617	2,694	2,805	6,543	6,663	6,858	7,142	
	200	(25.2)	(25.7)	(26.4)	(27.5)	(64.2)	(65.3)	(67.3)	(70.0)	
		3,427	3,490	3,592	3,742	8,725	8,886	9,144	9,523	
#7	267	(33.6)	(34.2)	(35.2)	(36.7)	(85.6)	(87.1)	(89.7)	(93.4)	
		5,713	5,817	5,987	6,235	14,542	14,808	15,241	15,871	
	445	(56.0)	(57.0)	(58.7)	(61.1)	(142.6)	(145.2)	(149.5)	(155.6)	
		3,189	3,248	3,341	3,479	8,115	8,264	8,507	8,859	
	229	(31.3)	(31.8)	(32.8)	(34.1)	(79.6)	(81.0)	(83.4)	(86.9)	
		4,250	4,330	4,457	4,640	10,820	11,020	11,342	11,812	
#8	305	(41.7)	(42.5)	(43.7)	(45.5)	(106.1)	(108.1)	(111.2)	(115.8)	
		7,085	7,214	7,425	7,734	18,035	18,366	18,903	19,686	
	508	(69.5)	(70.7)	(72.8)	(75.8)	(176.9)	(180.1)	(185.4)	(193.1)	
										
	257	3,822 (37.5)	3,892 (38.2)	4,005 (39.3)	4,171 (40.9)	9,725	9,904 (97.1)	10,194 (100.0)	10,616 (104.1)	
			5,189	5,339	5,561	(95.4) 12,968	13,206	13,592	14,154	
#9	343	5,094								
		(50.0)	(50.9)	(52.4)	(54.5) 9,267	(127.2)	(129.5) 22,011	(133.3) 22,652	(138.8) 23,591	
572	8,491	8,648	8,899		21,614					
		(83.3)	(84.8)	(87.3)	(90.9)	(212.0)	(215.8)	(222.1)	(231.4)	
	286	4,497	4,579	4,713	4,908	11,446	11,657	11,998	12,494	
		(44.1)	(44.9)	(46.2)	(48.1)	(112.3)	(114.3)	(117.7)	(122.5)	
#10	381	5,996	6,105	6,285	6,545	15,261	15,542	15,996	16,658	
	_	(58.8)	(59.9)	(61.6)	(64.2)	(149.7)	(152.4)	(156.9)	(163.4)	
	635	9,993	10,176	10,473	10,907	25,435	25,905	26,660	27,764	
		(98.0)	(99.8)	(102.7)	(107.0)	(249.4)	(254.0)	(261.4)	(272.3)	

- 請參閱第 3.1.8 節,了解荷載值的制定說明。 請參閱第 3.1.8 節,了解荷載值的制定說明。 請參閱第 3.1.8 6 節將設計強度值轉換為 ASD 值。 不允許埋置深度和混凝土抗壓強度之間的線性內插法。 視需要應用表 5 至表 20 的間距、邊距及混凝土厚度係數。與表 4 中的鋼材數值進行比較。較小的值會用於設計。 數值適用於下列溫度範圍:最高短期溫度 = 130°F (55°C)、最高長期溫度 = 110°F (43°C)。混凝土溫度的短期提升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝


表 4 - 鋼筋的鋼材設計強度 1

	AS	STM A 615 等級 4	0 ²	AS	STM A 615 等級 6	0 ²	AS	STM A 706 等級 6	0 ²
鋼筋	拉力 ³	剪力⁴	抗震剪力⁵	拉力 ³	剪力⁴	抗震剪力⁵	拉力³	剪力⁴	抗震剪力⁵
尺寸	φN _{sa}	φV _{sa}	$\phi V_{sa,eq}$	φN _{sa}	ϕV_{sa}	φV _{sa,eq}	ϕN_{sa}	φV _{sa}	$\phi V_{sa,eq}$
	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)	kgf (kN)
#3	1,946	1,077	755	2,919	1,617	1,132	2,994	1,556	1,089
#3	(19.1)	(10.6)	(7.4)	(28.6)	(15.9)	(11.1)	(29.4)	(15.3)	(10.7)
#4	3,538	1,960	1,372	5,307	2,939	2,057	5,443	2,830	1,982
π4	(34.7)	(19.2)	(13.5)	(52.0)	(28.8)	(20.2)	(53.4)	(27.8)	(19.4)
#5	5,484	3,037	2,125	8,226	4,556	3,189	8,437	4,386	3,071
#5	(53.8)	(29.8)	(20.8)	(80.7)	(44.7)	(31.3)	(82.7)	(43.0)	(30.1)
#6	7,784	4,311	3,019	11,675	6,466	4,527	11,975	6,228	4,359
#0	(76.3)	(42.3)	(29.6)	(114.5)	(63.4)	(44.4)	(117.4)	(61.1)	(42.7)
#7	10,614	5,879	4,114	15,921	8,818	6,173	16,329	8,491	5,944
π1	(104.1)	(57.6)	(40.3)	(156.1)	(86.5)	(60.5)	(160.1)	(83.3)	(58.3)
#8	13,975	7,741	5,418	20,963	11,610	8,126	21,500	11,181	7,827
#0	(137.0)	(75.9)	(53.1)	(205.6)	(113.9)	(79.7)	(210.8)	(109.6)	(76.8)
#9	17,690	9,798	6,858	26,535	14,696	10,287	27,216	14,152	9,906
#9	(173.5)	(96.1)	(67.3)	(260.2)	(144.1)	(100.9)	(266.9)	(138.8)	(97.1)
#10	22,466	12,442	8,709	33,700	18,665	13,066	34,564	17,974	12,583
#10	(220.3)	(122.0)	(85.4)	(330.5)	(183.0)	(128.1)	(339.0)	(176.3)	(123.4)

- 1 請參閱第 3.1.8.6 節(2019 PTG) 將設計強度值轉換為 ASD 值。
 2 ASTM A706 等級 60 鋼筋可視為韌性鋼質元件。ASTM A 615 等級 40 和 60 鋼筋可視為脆性鋼質元件。
 3 張力 = φN_{ss} = φ A_{ssN} f_{ust} 如 ACI 318/ CIVIL 401 第 17 章所述。
 4 剪力值由使用 φV_{ss} < φ 0.60 A_{ssN} f_{ust} 的静態剪力測試判定,如 ACI 318/ CIVIL 401 第 17 章所述。
 5 地震剪力值由使用 φV_{ss} < φ 0.60 A_{ssN} f_{ust} 的地震剪力測試判定,如 ACI 318/ CIVIL 401 第 17 章所述。
 有關地震應用的其他資訊,請參閱第 3.1.8 節。

2.4.9 喜利得 HIT-RE 100 化學藥劑和喜利得 HAS-U-T(R2) 螺桿

表 5 - 使用 HIT-RE 100 化學藥劑安裝規格

安裝資訊		符號	單位	標準錨栓直徑					
交表員訊		1য সার্	単位	10	12	16	20	24	
標準鑽頭直徑		d _o	mm	12	14	18	22	28	
標準有效埋深		h _{ef,std}	mm	86	114	143	171	200	
有效埋深	最短	h _{ef,min}	mm	60	70	79	89	89	
有双垤床	最長	h _{ef,max}	mm	191	254	318	381	445	
被固定物孔的	穿透式設置		mm	14	16	20	24	30	
最小直徑	預置		mm	12	14	18	22	26	
安裝扭矩		7	ft-lb	15	30	60	100	125	
女装拉起		T_{inst}	(Nm)	(20)	(40)	(80)	(136)	(169)	
最小混凝土厚度	最小混凝土厚度		mm	h _{ef} +	÷ 51		$h_{ef} + 2_{do}$		
最小邊距2	最小邊距2		mm	48	64	79	95	111	
最短錨栓間距		S _{min}	mm	48	64	79	95	111	

圖 1 — HAS-U-T(R2) 螺桿

錨栓緊固技術指引

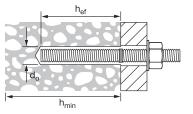


圖 2 - 使用 (2) 個墊片安裝

79

對於在非開裂混凝土中安裝的螺桿, 喜利得 HIT-RE 100 化學藥劑的設計強度與混凝土/ 黏結破壞 ^{1,2,3,4,5,6,7,8,9,10}

	사내는 비소 수소								
			拉力 -	- ΦN _n			剪力 -	— Φ <i>V</i> _n	
標準錨 栓直徑 (mm)	有效埋置 深度 (mm)	f´c = 175 kgf/cm² kgf (kN)	f´c = 210 kgf/cm² kgf (kN)	f'c = 280 kgf/cm² kgf (kN)	f´c = 420 kgf/cm² kgf (kN)	f´c = 175 kgf/cm² kgf (kN)	f´c = 210 kgf/cm² kgf (kN)	f´c = 280 kgf/cm² kgf (kN)	f'_c = 420 kgf/cm ² kgf (kN)
	60	887 (8.7)	905 (8.9)	930 (9.1)	968 (9.5)	1,129 (11.1)	1,150 (11.3)	1,184 (11.6)	1,234 (12.1)
M10	86	1,261 (12.4)	1,286 (12.6)	1,322 (13.0)	1,377 (13.5)	3,211 (31.5)	3,270 (32.1)	3,366 (33.0)	3,506 (34.4)
IVITO	114	1,683 (16.5)	1,712 (16.8)	1,762 (17.3)	1,837 (18.0)	4,282 (42.0)	4,361 (42.8)	4,488 (44.0)	4,674 (45.8)
	191	2,803 (27.5)	2,855 (28.0)	2,939 (28.8)	3,059 (30.0)	7,137 (70.0)	7,269 (71.3)	7,480 (73.4)	7,790 (76.4)
	70	1,354 (13.3)	1,379 (13.5)	1,420 (13.9)	1,476 (14.5)	3,445 (33.8)	3,509 (34.4)	3,611 (35.4)	3,760 (36.9)
M12	114	2,216 (21.7)	2,257 (22.1)	2,322 (22.8)	2,418 (23.7)	5,638 (55.3)	5,742 (56.3)	5,910 (58.0)	6,153 (60.3)
IVITZ	152	2,953 (29.0)	3,007 (29.5)	3,096 (30.4)	3,223 (31.6)	7,518 (73.7)	7,654 (75.1)	7,879 (77.3)	8,205 (80.5)
	254	4,921 (48.3)	5,012 (49.2)	5,160 (50.6)	5,373 (52.7)	12,528 (122.9)	12,760 (125.1)	13,131 (128.8)	13,676 (134.1)
	79	1,844 (18.1)	1,878 (18.4)	1,932 (18.9)	2,012 (19.7)	4,209 (41.3)	4,611 (45.2)	4,917 (48.2)	5,121 (50.2)
M16	143	3,318 (32.5)	3,379 (33.1)	3,477 (34.1)	3,622 (35.5)	8,444 (82.8)	8,600 (84.3)	8,852 (86.8)	9,217 (90.4)
IVITO	191	4,423 (43.4)	4,504 (44.2)	4,636 (45.5)	4,828 (47.4)	11,260 (110.4)	11,467 (112.5)	11,800 (115.7)	12,290 (120.5)
	318	7,373 (72.3)	7,507 (73.6)	7,727 (75.8)	8,047 (78.9)	18,765 (184.0)	19,110 (187.4)	19,668 (192.9)	20,482 (200.9)
	89	2,316 (22.7)	2,438 (23.9)	2,511 (24.6)	2,615 (25.6)	4,990 (48.9)	5,466 (53.6)	6,312 (61.9)	6,654 (65.3)
M20	171	4,618 (45.3)	4,704 (46.1)	4,840 (47.5)	5,042 (49.4)	11,757 (115.3)	11,973 (117.4)	12,322 (120.8)	12,832 (125.8)
IVIZO	229	6,158 (60.4)	6,271 (61.5)	6,455 (63.3)	6,722 (65.9)	15,674 (153.7)	15,964 (156.6)	16,429 (161.1)	17,109 (167.8)
	381	10,263 (100.6)	10,453 (102.5)	10,757 (105.5)	11,201 (109.8)	26,125 (256.2)	26,605 (260.9)	27,381 (268.5)	28,515 (279.6)
	102	2,802 (27.5)	3,069 (30.1)	3,546 (34.8)	3,701 (36.3)	6,036 (59.2)	6,613 (64.9)	7,635 (74.9)	9,350 (91.7)
	229	7,626 (74.8)	7,767 (76.2)	7,994 (78.4)	8,324 (81.6)	19,413 (190.4)	19,769 (193.9)	20,347 (199.5)	21,188 (207.8)
M24	305	10,167 (99.7)	10,356 (101.6)	10,657 (104.5)	11,100 (108.9)	25,884 (253.8)	26,360 (258.5)	27,130 (266.1)	28,252 (277.1)
	508	15,832 (155.3)	16,116 (158.0)	16,587 (162.7)	17,273 (169.4)	40,300 (395.2)	41,023 (402.3)	42,221 (414.0)	43,968 (431.2)

- 請參閱第 3.1.8 節,了解荷載值的制定說明。
- 請參閱第 3.1.8.6 節 將設計強度值轉換為 ASD 值。
- 2 請參開第 3.1.8.6 節 將設計強度值轉換為 ASD 值。
 3 不允許埋置深度和混凝土抗壓強度之間的線性內插法。
 4 視需要應用表 26 至表 38 的間距、邊距及混凝土厚度係數。與表 24 中的鋼材數值進行比較。較小的值會用於設計。
 数值適用於下列溫度範圍:最高短期溫度 = 130°F (55°C)、最高長期溫度 = 110°F (43°C)。混凝土溫度的短期提升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土溫度會在相當長的一段時間內保持大致恆定。
 表格值適用於乾燥混凝土條件。 對於水飽和混凝土、含水孔或水下應用,將設計強度乘以 0.61。
 7 表列值僅限短期荷載。 對於外倒吊施工等可持續荷載的資訊,請參閱第 3.1.8.8 節(2019 PTG)。
 表列值僅限短期荷載。 對於例吊施工等可持續荷載的資訊,請參閱第 3.1.8.8 節(2019 PTG)。
 表列值僅限短期荷載。 對於輕質混凝土,將設計強度如下所示乘以 λ。對於輕質砂混凝土,λ。= 0.51;對於全輕質混凝土,λ。= 0.45。
 9 表列值適用於使用碳化鍋電鎚鑽頭在混凝土鑽的孔洞。不允許使用鑽石空心鑽孔。

- 10 表列值僅限靜態荷載。非開裂混凝土不允許進行抗震設計。

表 7 — 對於在開裂混凝土中安裝的螺桿, 喜利得 HIT-RE 100 化學藥劑的設計強度與混凝土/ 黏結破壞 ^{1,2,3,4,5,6,7,8,9,10}

			拉力 -	— Φ <i>N</i> _n			剪力 -	$-\Phi V_n$	
標準錨 栓直徑 (mm)	有效埋置 深度 (mm)	f′ _c = 175 kgf/cm² kgf (kN)	f'c = 210 kgf/cm² kgf (kN)	f'c = 280 kgf/cm² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	f´c = 175 kgf/cm² kgf (kN)	f´c = 210 kgf/cm² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)
	60	431 (4.2)	438 (4.3)	451 (4.4)	469 (4.6)	547 (5.4)	558 (5.5)	574 (5.6)	596 (5.8)
	86	610 (6.0)	621 (6.1)	640 (6.3)	667 (6.5)	1,556 (15.3)	1,583 (15.5)	1,631 (16.0)	1,699 (16.7)
M10	M10 114	814 (8.0)	830 (8.1)	855 (8.4)	889 (8.7)	2,073 (20.3)	2,111 (20.7)	2,173 (21.3)	2,263 (22.2)
	191	1,359 (13.3)	1,383 (13.6)	1,424 (14.0)	1,481 (14.5)	3,456 (33.9)	3,520 (34.5)	3,622 (35.5)	3,772 (37.0)
	70	637 (6.2)	649 (6.4)	669 (6.6)	696 (6.8)	1,624 (15.9)	1,653 (16.2)	1,701 (16.7)	1,774 (17.4)
	114	1,043 (10.2)	1,064 (10.4)	1,093 (10.7)	1,139 (11.2)	2,658 (26.1)	2,706 (26.5)	2,785 (27.3)	2,901 (28.4)
M12	152	1,393 (13.7)	1,417	1,458	1,520	3,543	3,608	3,713	3,867
	254	2,320	(13.9) 2,363	(14.3)	(14.9) 2,531	(34.7) 5,906	(35.4) 6,015	(36.4) 6,189	(37.9) 6,446
	79	(22.8) 907	(23.2) 923	(23.8) 950	(24.8) 989	(57.9) 2,307	(59.0) 2,350	(60.7) 2,418	(63.2) 2,517
	143	(8.9) 1,631	(9.1) 1,660	(9.3) 1,710	(9.7) 1,780	(22.6) 4,153	(23.0) 4,227	(23.7) 4,352	(24.7) 4,531
M16	191	(16.0) 2,175	(16.3) 2,216	(16.8) 2,279	(17.5) 2,375	(40.7) 5,536	(41.5) 5,638	(42.7) 5,801	(44.4) 6,042
	318	(21.3) 3,624	(21.7) 3,692	(22.4) 3,799	(23.3) 3,958	(54.3) 9,226	(55.3) 9,396	(56.9) 9,671	(59.3) 10,072
	89	(35.5) 1,152	(36.2) 1,173	(37.3) 1,207	(38.8) 1,256	(90.5) 2,932	(92.1) 2,987	(94.8) 3,073	(98.8) 3,200
	171	(11.3) 2,223	(11.5) 2,263	(11.8) 2,329	(12.3) 2,424	(28.8) 5,656	(29.3) 5,761	(30.1) 5,928	(31.4) 6,173
M20	229	(21.8) 2,962	(22.2) 3,016	(22.8) 3,105	(23.8) 3,234	(55.5) 7,541	(56.5) 7,679	(58.1) 7,904	(60.5) 8,230
	381	(29.0) 4,937	(29.6) 5,028	(30.4) 5,175	(31.7) 5,389	(74.0) 12,569	(75.3) 12,800	(77.5) 13,172	(80.7) 13,719
	102	(48.4) 1,491	(49.3) 1,518	(50.8) 1,560	(52.8) 1,626	(123.3) 3,793	(125.5) 3,862	(129.2) 3,974	(134.5) 4,139
		(14.6) 3,352	(14.9) 3,413	(15.3) 3,514	(15.9) 3,658	(37.2) 8,533	(37.9) 8,690	(39.0) 8,944	(40.6) 9.314
M24	229	(32.9)	(33.5)	(34.5)	(35.9) 4,879	(83.7) 11,378	(85.2) 11,587	(87.7) 11,926	(91.3)
	305	4,471 (43.8)	4,551 (44.6)	(45.9)	(47.8)	(111.6)	(113.6)	(117.0)	12,418 (121.8)
	508	7,307 (71.7)	7,438 (72.9)	7,655 (75.1)	7,972 (78.2)	18,600 (182.4)	18,934 (185.7)	19,487 (191.1)	20,293 (199.0)

- 1 請參閱第 3.1.8 節(2019 PTG), 了解荷載值的制定說明。

- 1 前参阅第 3.1.8 即(2019 PTG), 可附何 戰間的例定說明。
 2 前参閱第 3.1.8 節(2019 PTG), 所設計強度信轉換為 ASD 值。
 3 不允許埋置深度和混凝土抗壓強度之間的線性內插法。
 4 視需要應用表 5 至表 20 的間距、邊距及混凝土厚度係數。與表 24 中的鋼材數值進行比較。較小的值會用於設計。
 5 數值適用於下列溫度範圍:最高短期溫度 = 130°F (55°C)、最高長期溫度 = 110°F (43°C)。混凝土温度的短期提升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土温度會在相當長的一段時間內保持大效恆定。
- 工画及實任相當稅的一段時间內保持久效因此。
 Tabular values are for dry concrete conditions. For water saturated concrete, water-filled drilled holes, or submurged (underwater) applications multiply design strength by 0.61. 表列值僅限短期荷載。對於倒吊施工等可持續荷載的資訊,請參閱第 3.1.8.8 節(2019 PTG)。
 表列值僅限於額定重量混凝土。對於輕質混凝土,將設計強度如下所示乘以 λ₃:對於輕質砂混凝土,λ₃ = 0.51;對於全輕質混凝土,λ₃ = 0.45。表列值適用於使用碳化銷電鍵鑽頭在混凝土鑽的孔洞

- 9 表列值與用於使用映色網線與原止應應 其於抗震荷載,將拉力和剪力的開裂混凝土表列值乘以α_{seis} = 0.675。有關地震應用的其他資訊,請參閱第 3.1.8.7 (2019 PTG) 節。

表 8 — Hilti HAS-U-T& HAS-U-T R2 螺桿的鋼材設計強度

1 Tille TIAO	IIITHA3-0-16 HA3-0-1 N2 孫仟印ূ河內政门 法反								
	ŀ	HAS-U-T 碳鋼螺桿 (5.8 級)	HAS-U-T R2不銹鋼螺桿					
標準錨栓直徑	拉力 pN _{sa} kgf (kN)	剪力 φV _{sa} kgf (kN)	抗震剪力 φV _{sa,eq} kgf (kN)	拉力 pN _{sa} kgf (kN)	剪力 φV _{sa} kgf (kN)	抗震剪力 _{ΦV_{sa,eq} kgf (kN)}			
M10	18.9	8.7	6.1	26.0	14.4	10.1			
M12	27.3	15.3	10.7	37.8	20.9	14.7			
M16	51.0	28.2	19.7	70.4	39.0	27.3			
M20	79.6	44.1	30.9	93.3	51.7	36.2			
M24	114.7	63.6	44.5	134.5	74.5	52.1			

- 1 不允許在埋入深度與混凝土的抗壓強度之間進行線性計算。若有不同設計條件,請使用喜利得錨栓設計軟體 PROFIS Engineering。
- 2 表中數值為單根錨栓數值,且未折減邊距、錨栓間距或混凝土厚度。表7表8需與表9 的鋼材數值比較。以數值較小者為準。如遇較複雜的錨栓設計,請使用喜利得錨栓設計軟體 PROFIS

安裝說明

安裝使用說明 (IFU) 隨附每個產品包裝。您也可以在線上檢視或下載,網址為 www.hilti.com.tw。因為可能隨時變更,所以請務必確 認下載的 IFU 在使用時為最新版本。為發揮完整效能,請務必正確安裝。可視需求提供培訓。如需了解 IFU 中未涉及的應用和條件, 請聯絡喜利得技術服務。

作業時間和固化時間(約略值)

	323	14		(SINICIONICIO)	
	[°C]	[°F]	twork	Loure, int	t _{cure, full}
	5	41	21/2h	≥18 h	≥72 h
0,11,0	10	50	2 h	≥12 h	≥48 h
-402+	15	59	11/2 h	≥8 h	≥24 h
	20	68	30 min	≥6 h	≥12 h
	30	86	20 min	≥4 h	≥8 h
	40	104	12 min	≥2 h	≥4 h

材料規範

表 68 - 充分固化的 HIT-RE 100 化學藥劑的材料性質

7077 1017	3113111-24			
黏結強度 ASTM C882-12 ¹				
2 天固化	20.1 Mpa	2,920 psi		
14 天固化	21.0 Mpa	3,050 psi		
抗壓強度 ASTM D695-10 ¹	74.3 Mpa	10,780 psi		
抗壓模量 ASTM D695-10 ¹	3,731 Mpa	0.541 x 10 ⁶ psi		
抗拉強度 7 天 ASTM D638-10	11.7 Mpa	1,690 psi		
斷裂伸長率 ASTM D638-10	0.1	0%		
熱變形溫度 ASTM D648-07	56.8°C	134.3°F		
吸收 ASTM D570-10	0.06%			
固化收縮線性係數 ASTM D2566-86 0.0001				

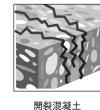
¹ 在 35°F、50°F、75°F 及 110°F 測試中取得的 最小值。

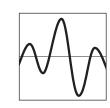
表 9 — HIT-RE 100 的抗腐蝕性

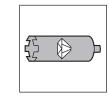
化學	已測試抗腐蝕性	耐久	不耐久
	混凝土鑽孔	+	
	泥土 (10%) pH=12.6		
	混凝土鑽孔	+	
鹼性	泥土 (10%) pH=13.2		
	混凝土鉀鹼 溶液 (10%)	+	
	AM (10%) pH=14.0		
	乙酸 (10%)¹		
	引酸 (10%)¹		_
鹼性	鹽酸 (10%)		_
HW I-L	3個月		
	硫酸(10%)		-
	苯甲醇		-
	乙醇		-
	乙酸乙酯		-
溶劑	丁酮 (MEK)		-
	三氯乙烯		-
	二甲苯 (混合物)	+	
	化學混凝土塑化劑	+	
//. EXI //- CD	工作用柴油	+	
化學工作用 工地	工地用油	+	
工地	汽油	+	
	模板油 (成型油)	+	
	環境鹽	+	
	水		
	化學去礦質水	+	
環保產業化學	鹽霧試驗	+	
	SO2	+	
	環境/氣候	+	
1 混凝土油酸溶解			

1 混凝土被酸溶解

將 HIT-RE 100 樹脂樣品浸入各種化合物長達一年。 樣品已在測試期間分析完畢。無有形損壞且彎曲(柔 性) 強度減少量低於 25% 的樣品分類為「耐久」。 嚴重損壞或毀壞的樣品分類為「不耐久」。


附註:在實際使用情況下,大多數樹脂被包覆在基材 中,且暴露表面積很小。


3.2.5 HVU2 膠囊式化學型錨栓系統


產品介紹

錨栓系統 功能和優勢 結合幾乎即時荷載的高效能、多功能性及 方便性 喜利得 HVU2 快速固化 — 室溫下只要 5 分鐘 錨栓膠囊 鑽石空心鑽孔適用, 甚至適用於開裂混凝土 和抗震應用 結實、有韌性的柔軟鋁箔藥劑包 — 破損風 適用於惡劣工地條件,包括水飽和混凝土和 喜利得 HAS-U-T(R2) 螺桿 低安裝溫度 附有安裝提示 SafeSetTM 利用喜利得空心鑽頭和喜利得 吸塵器自動清潔孔洞 實現幾乎無塵的應用, 並 遵循 OSHA 1926.1153 表 1 的標準 使用鑽孔機、衝擊起子或鎚鑽進行更快速、 喜利得 HIS-N 和 HIS-RN 內牙螺桿 更方便的安裝

錨栓緊固技術指引

抗震設計類別 A-F 允許使用鑽石空心鑽孔

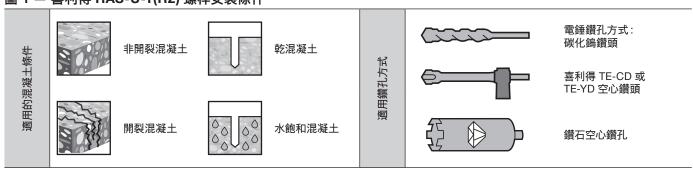
空心鑽頭

Profis Engineering 錨栓設計軟體

列名認證/核准	
ICC-ES (國際規範委員會) - 2021 年國際建築法規 / 國際住宅法規	混凝土中的 ESR-4372 符合 ACI 318/土木 401 第 17 章/ACI 355.4/ICC-ES AC308 標準
NSF/ANSI 標準 61	在飲用水中的使用認證
歐洲技術核准	ETA-18/0184、ETA-18/0185
洛杉磯市	2020 年 LABC 補充說明 (符合 ESR-4372 標準)
佛羅里達州建築法規	2020 年 高速颶風帶 FBC 補充說明 (符合 ESR-4372 標準)
美國綠色建築委員會	LEED® Credit 4.1 - 低汙染材料

用於混凝土的設計資料符合 ACI 318/土木 401 標準

ACI 318/土木 401 第 17 章設計


本節所包含的荷載值為喜利得簡化設計表。本節荷載表係使用強度設計參數和 ESR-4372 變量, 以及 ACI 318/土木 401 第 17 章內 的公式制定而成。如需喜利得簡化設計表的詳細解釋, 請參閱第 3.1.8 節。ESR-4372 資料表不包含在本節, 但可在以下網址參閱: www.icc-es.org 或 www.hilti.com.tw.

喜利得 HVU2 錨栓膠囊和喜利得 HAS-U-T(R2) 螺桿

喜利得 HAS-U-T(R2) 螺桿附有安裝提示

圖 1 - 喜利得 HAS-U-T(R2) 螺桿安裝條件

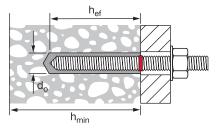


表 1 - 喜利得 HAS-U-T(R2) 螺桿安裝規範 1

安裝資訊		符號	單位	標準桿直徑 (mm)						
女装員訊		1寸 列於	単型	M8	M10	M12	M16	M20	M24	
		d _o	mm	10	11	14	17	22	28	
標準鑽頭直徑		d _o	mm	-	12	14	17	22	28	
	₹ ₽ →	d _。	mm	-	-	14	17	22	28	
有效埋深		h _{ef}	mm	80	89	108	127	168	210	
被固定物孔直徑		d _f	mm	9	12	14	18	22	26	
安裝扭矩		T _{inst}	Nm	10	20	41	81	136	200	
最小混凝土厚度		h _{min}	mm	110	121	140	162	213	270	
最小邊距		C _{min}	mm	40	48	64	79	95	120	
最短錨栓間距		S _{min}	mm	40	48	64	79	95	120	

¹ 喜利得 HAS 螺桿材料規範列於第 3.2.7 節。

圖 2 — 使用喜利得 HVU2 錨栓膠囊安裝的喜利得 HAS-U-T(R2) 螺桿

表 2 — 對於在非開裂混凝土中安裝的螺桿, 喜利得 HVU2 化學藥劑的設計強度與混凝土/黏結破壞之較小值 1,2,3,4,5,6,7,8,9

錨栓緊固技術指引

			拉力 -	- ΦN _n			剪力 -	- ΦV _n	
標準錨栓直徑 (mm)	有效埋深 (mm)	$f'_{c} = 175 \text{ kgf/cm}^2 \text{ kgf (kN)}$	f' c = 210 kgf/cm ² kgf (kN)	f' c = 280 kgf/cm ² kgf (kN)	f'_{c} = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	$f'_c = 210 \text{ kgf/cm}^2 \text{ kgf (kN)}$	f' c = 280 kgf/cm² kgf (kN)	f'_c = 420 kgf/cm ² kgf (kN)
M10	89	1,794	1,880	2,025	2,252	3,862	4,051	4,364	4,849
	09	(17.6)	(18.4)	(19.9)	(22.1)	(37.9)	(39.7)	(42.8)	(47.6)
M12	108	3,100	3,395	3,921	4,801	6,677	7,314	8,446	10,344
IVITZ	108	(30.4)	(33.3)	(38.5)	(47.1)	(65.5)	(71.7)	(82.8)	(101.4)
M16	127	3,955	4,334	5,003	6,128	8,521	9,333	10,777	13,200
IVI IO	127	(38.8)	(42.5)	(49.1)	(60.1)	(83.6)	(91.5)	(105.7)	(129.4)
N400	100	6,033	6,609	7,632	9,346	12,995	14,234	16,436	20,130
M20	168	(59.2)	(64.8)	(74.8)	(91.7)	(127.4)	(139.6)	(161.2)	(197.4)
M04	010	8,385	9,183	10,605	12,989	18,057	19,781	22,841	27,975
M24	210	(82.2)	(90.1)	(104.0)	(127.4)	(177.1)	(194.0)	(224.0)	(274.3)

表 3 — 對於在開裂混凝土中安裝的螺桿, 喜利得 HVU2 化學藥劑的設計強度與混凝土/黏結破壞之較小值 1,2,3,4,5,6,7,8,9

使用碳化鎢鑽頭,	或是喜利得
TE-CD 或 TE-YD 行電錘鑽孔	空心鑽頭進

			 拉力 -	- ΦN _n		剪力 — ΦV,				
標準錨栓直徑 (mm)	有效埋深 (mm)	f'c = 175 kgf/cm² kgf (kN)	f'c = 210 kgf/cm² kgf (kN)	f' c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	f'_c = 210 kgf/cm ² kgf (kN)	f'c = 280 kgf/cm² kgf (kN)	f'c = 420 kgf/cm ² kgf (kN)	
M12	108	2,077	2,130	2,218	2,347	4,472	4,588	4,776	5,055	
IVI IZ	106	(20.4)	(20.9)	(21.8)	(23.0)	(43.9)	(45.0)	(46.8)	(49.6)	
M16	127	2,801	3,069	3,261	3,452	6,035	6,611	7,024	7,434	
IVITO	127	(27.5)	(30.1)	(32.0)	(33.9)	(59.2)	(64.8)	(68.9)	(72.9)	
M20	168	4,273	4,681	5,185	5,488	9,203	10,083	11,170	11,821	
IVIZU	100	(41.9)	(45.9)	(50.8)	(53.8)	(90.3)	(98.9)	(109.5)	(115.9)	
M24	210	5,938	6,505	7,511	9,113	12,791	14,011	16,180	19,629	
IVI24	210	(58.2)	(63.8)	(73.7)	(89.4)	(125.4)	(137.4)	(158.7)	(192.5)	

- 請參閱第 3.1.8 節, 了解荷載值的制定說明。
- 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。 不允許埋置深度和混凝土抗壓強度之間的線性內插法。
- 小允計理宜深度 机混凝土沉壓强度 乙間的線性內插法。 視需要將表 7 至表 10 的間距、邊距及混凝土厚度係數應用於上方值。與表 6 中的鋼材數值進行比較。較小的值會用於設計。 資料適用於溫度範圍 A: 最高短期溫度 = 130°F (55°C)、最高長期溫度 = 110°F (43°C)。 對於溫度範圍 B: 最高短期溫度 = 176°F (80°C)、最高長期溫度 = 110°F (43°C) 將上方值乘以 0.93。對於溫度範圍 C: 最高短期溫度 = 248°F (120°C)、最高長期溫度 = 162°F (72°C) 將上方值乘以 0.58。混凝土溫度的短期提升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土溫度會在相當長的一段時間內保持大致恆定。
- 表列值適用於乾混凝土或水飽和混凝土條件。 表列值僅限短期荷載。對於倒吊施工等可持續荷載,請參閱第 3.1.8 節。

- 7 表列值僅限於網定重量混凝土。對於輕質混凝土,將設計強度如下所示乘以 λ_。:對於輕質砂混凝土,λ_。= 0.51;對於全輕質混凝土,λ_。= 0.45。 8 表列值僅限於網定重量混凝土。對於輕質混凝土,將設計強度如下所示乘以 λ_。:對於輕質砂混凝土,λ_。= 0.51;對於全輕質混凝土,λ_。= 0.45。 9 對於 3/8 英时至 1 英吋直徑的螺桿,表列值僅限於水平和垂直向下的方向。對於倒吊施工(垂直向上)安裝,表列值必須乘以 0.70。 10 1-1/4 英吋直徑桿只能以一般垂直向下的方式安裝。 11 表列值僅限靜態荷載。非開裂混凝土不允許進行抗震設計。對於地震荷載,將拉力和剪力的開裂混凝土表列值乘以 α_{sols} = 0.75。有關地震應用的其他資訊,請參閱第 3.1.8 節。

表 4 — 對於在非開裂混凝土中安裝的螺桿, 喜利得 HVU2 化學藥劑的設計強度與混凝土/黏結破壞之較小值 1,2,3,4,5,6,7,8,9

			拉力 -	$-\Phi N_n$		剪力 — ΦV _n						
標準錨栓直徑 (mm)	有效埋深 (mm)	f' _c = 175 kgf/cm ² kgf (kN)	f'c = 210 kgf/cm² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f'_c = 420 kgf/cm ² kgf (kN)	f'_{c} = 175 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)			
M12	108	3,100	3,395	3,921	4,522	6,677	7,314	8,446	9,741			
IVITZ	106	(30.4)	(33.3)	(38.5)	(44.3)	(65.5)	(71.7)	(82.8)	(95.5)			
M16	127	3,955	4,334	5,003	6,128	8,521	9,333	10,777	13,200			
IVI IO	127	(38.8)	(42.5)	(49.1)	(60.1)	(83.6)	(91.5)	(105.7)	(129.4)			
M20	168	6,033	6,609	7,632	9,346	12,995	14,234	16,436	20,130			
IVIZU	100	(59.2)	(64.8)	(74.8)	(91.7)	(127.4)	(139.6)	(161.2)	(197.4)			
M24	210	8,385	9,183	10,605	12,989	18,057	19,781	22,841	27,975			
10124	210	(82.2)	(90.1)	(104.0)	(127.4)	(177.1)	(194.0)	(224.0)	(274.3)			

表 5 — 對於在開裂混凝土中安裝的螺桿, 喜利得 HVU2 化學藥劑的 設計強度與混凝土/黏結破壞之較小值 1,2,3,4,5,6,7,8,9

RATIONAL TOTAL											
			拉力 -	$-\Phi N_n$		剪力 — ΦV _n					
標準錨栓直徑 (mm)	有效埋深 (mm)	f' _c = 175 kgf/cm ² kgf (kN)	f'c = 210 kgf/cm² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f'_c = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	f'_c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f'_{c} = 420 kgf/cm ² kgf (kN)		
M12	100	2,116	2,116	2,116	2,116	4,556	4,556	4,556	4,556		
IVI IZ	108	(20.8)	(20.8)	(20.8)	(20.8)	(44.7)	(44.7)	(44.7)	(44.7)		
M16	127	2,801	3,069	3,112	3,112	6,035	6,611	6,702	6,702		
IVITO	127	(27.5)	(30.1)	(30.5)	(30.5)	(59.2)	(64.8)	(65.7)	(65.7)		
M20	168	4,273	4,681	4,946	4,946	9,203	10,083	10,657	10,657		
IVIZU	100	(41.9)	(45.9)	(48.5)	(48.5)	(90.3)	(98.9)	(104.5)	(104.5)		
M24	010	5,938	6,505	7,511	8,215	12,791	14,011	16,180	17,692		
IVI24	210	(58.2)	(63.8)	(73.7)	(80.6)	(125.4)	(137.4)	(158.7)	(173.5)		

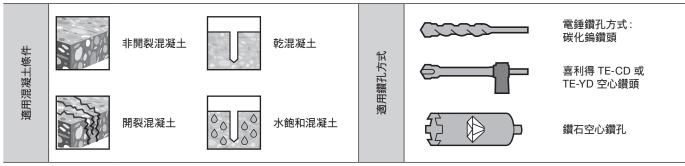
- 請參閱第 3.1.8 節, 了解荷載值的制定說明。 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。
- 不允許理置深度和混凝土抗壓強度之間的線性內插法。 視需要將表 7 至表 10 的間距、邊距及混凝土厚度係數應用於上方值。與表 6 中的鋼材數值進行比較。較小的值會用於設計。
- 语料適用於溫度範圍 A: 最高短期溫度 = 130°F (80°C)、最高長期溫度 = 110°F (43°C)。 對於溫度範圍 B: 最高短期溫度 = 176°F (80°C)、最高長期溫度 = 110°F (43°C) 將上方值乘以 0.93。對於溫度範圍 C: 最高短期溫度 = 248°F (120°C)、最高長期溫度 = 162°F (72°C) 將上方值 對於溫度範圍 B:最高短期溫度 = 176°F (80°C)、最高長期溫度 = 110°F (43°C) 將上方值乘以 0.93。對於溫度範圍 C:最高短期溫度 = 248°F (120°C 乘以 0.58。 混凝土溫度的短期提升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土溫度會在相當長的一段時間內保持大致恆定。 表列值適用於乾混凝土或水飽和混凝土條件。 表列值僅限短期荷載。對於倒吊施工等可持續荷載,請參閱第 3.1.8 節。 表列值僅限於頻定重量混凝土。對於輕質混凝土,將設計強度如下所示乘以 λ。對於輕質砂混凝土,λ。= 0.51;對於全輕質混凝土,λ。= 0.45。 對於 1/2 英时至 1 英时直徑的螺桿,表列值僅限於水平和垂直向下的方向。對於倒吊施工 (垂直向上) 安裝,表列值必須乘以 0.70。 10 1-1/4 英时直徑桿只能以一般垂直向下的方式安裝。 11 表列後確認到經濟量,此限到過程上,不可以 2.75。

- 11 表列值僅限靜態荷載。非開製混凝土不允許進行抗震設計。對於地震荷載,將拉力和剪力的開製混凝土表列值乘以 $\alpha_{\text{sois}}=0.75$ 。 有關地震應用的其他資訊,請參閱第 3.18 節。

表 6 — Hilti HAS-U-T& HAS-U-T R2 螺桿的鋼材設計強度

	ŀ	HAS-U-T 碳鋼螺桿 (5.8 級)	HAS-U-T R2不銹鋼螺桿				
標準錨栓直徑	拉力 φN _{sa} kgf (kN)	剪力 _Ф V _{sa} kgf (kN)	抗震剪力 φV _{sa,eq} kgf (kN)	拉力 φN _{sa} kgf (kN)	剪力 φV _{sa} kgf (kN)	抗震剪力 φV _{sa.eq} kgf (kN)		
M10	18.9	8.7	6.1	26.0	14.4	10.1		
M12	27.3	15.3	10.7	37.8	20.9	14.7		
M16	51.0	28.2	19.7	70.4	39.0	27.3		
M20	79.6	44.1	30.9	93.3	51.7	36.2		
M24	114.7	63.6	44.5	134.5	74.5	52.1		

- 1 不允許在埋入深度與混凝土的抗壓強度之間進行線性計算。若有不同設計條件,請使用喜利得錨栓設計軟體 PROFIS Engineering。 2 表中數值為單根錨栓數值,且未折減邊距、錨栓間距或混凝土厚度。表7表8需與表9 的鋼材數值比較。以數值較小者為準。如遇較複雜的錨栓設計,請使用喜利得錨栓設計軟體 PROFIS


- 2 农中數值為學根理性數值,且不前測處距。 雖任间距或此礙工學長。农/农內需與我多日 Engineering。 3 資料適用於溫度範圍 A:最大短期溫度 = 55°C,最大長期溫度 = 43°C。 4 表中數值適用於乾或水飽和混凝土條件。如需用於其他條件,請洽詢喜利得工程師。 5 表中的數值僅適用於標準配比的混凝土。如需用於輕型混凝土,請洽詢喜利得工程師。
- 6 表中數值適用於使用鎢鋼電鐵續頭鑽鑿的混凝土鑽孔。有關開製混凝土條件下的礦石鑽孔,請洽詢喜利得工程師。 7 如需耐震負載資訊,請洽詢喜利得工程師。

喜利得 HVU2 和喜利得 HIS-N 內牙螺桿

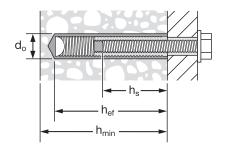

圖 3 — 喜利得 HIS-N 和 HIS-RN 內牙螺桿安裝條件

表 7 — 喜利得 HIS-N 和 HIS-RN 內牙螺桿安裝規範

安裝資訊		符號	單位	螺紋尺寸						
父 衣貝叫		ה <i>ו</i> ול ני1	- 平位	M8	M10	M12	M16	M20		
內牙螺桿外部直徑			mm	12.5	16.5	20.5	25.4	27.8		
標準鑽頭直徑 (所有鑽孔方式)		d _o	mm	14	18	22	28	32		
有效埋深		h _{ef}	mm	90	110	125	170	205		
內螺紋長度	最短	h	mm	8	10	12	16	20		
門珠拟校 <i>及</i>	最長	h _s	mm	20	25	30	40	50		
安裝扭矩		T _{inst}	Nm	10	20	41	81	136		
最小混凝土厚度		h _{min}	mm	120	150	170	230	270		
最小邊距		C _{min}	mm	40	83	102	127	140		
最小間距		S _{min}	mm	60	83	102	127	140		

圖 4 - 使用喜利得 HVU2 錨栓膠囊安裝的喜利得 HIS-N 和 HIS-RN 內牙螺桿

符合 ACI 318/土木 401 第 17 章標準的喜利得 HVU2 錨栓膠囊和 HIS-N 和 HIS-RN 內牙螺桿

喜利得 HVU2 錨栓膠囊的 ICC-ES ESR-4372 測試不包括喜利得 HIS-N 和 HIS-RN 內牙螺桿。對 HIS-N 和 HIS-RN 內牙螺桿執行 了其他測試, 且結果根據 ACI 355.4 和 ICC-ES AC308 加以評估, 並公佈在下表中。表格包括根據 ACI 318/土木 401 第 17 章的設 計參數, 且參數會使用ACI 318/土木 401 第 17 章計算, 以便制定喜利得簡化設計表。如需喜利得簡化設計表的詳細解釋, 請參閱第

表 8 — 符合 ACI 318/土木 401 第 17 章標準的 HVU2 錨栓膠囊設計資訊和喜利得 HIS-N 和 HIS-RN 內牙螺桿¹

	使用碳化鎢鑽頭, TE-CD 或 TE-YD 行電錘鑽孔	
標準螺栓/螺絲	直徑	

錨栓緊固技術指引

3.2.5

	IIVO2 细性形表似们 貝叫州台刊付 IIIO-IV	4H I IIO-LIM F3/	1] 电空頭化					
安裝資訊		符號	單位		標準	- 隼螺栓/螺絲 直	[徑	
女		1寸5版	単位	M8	M10	M12	M16	M20
HIS 內牙蚓	累桿外部直徑	da	mm	12.5	16.5	20.5	25.4	27.6
有效埋深 ²		h _{ef}	mm	90	110	125	170	205
最小混凝:	上厚度2	h _{min}	mm	120 150 170 230 27				
臨界邊距		C _{ac}	-	請參閱下方註解 8。				
最小邊距		C _{min}	mm	83 102 127 14				
最短錨栓同	間距	S _{min}	mm		83	102	127	140
	ス 4Pサイト/2 由t 3		in-lb			24		
非用彩泥	疑土的效能係數 ³	k _{c,uncr}	(SI)			(10.0)		
田石()日 (2		le .	in-lb	17				
用袋泥厂.	工的XX能价数。	k _{c,cr}	(SI)	(7.1)				
混凝土拉力	力破壞的強度折減係數 4	Ф _{с,N}	-	0.65				
混凝土剪え	力破壞的強度折減係數 4	$\Phi_{c,V}$	-	0.70				
Temp. range A ⁵	開裂混凝土的特性黏結應力 6,7	T _{cr}	kgf/cm²		50	50	50	50
ran A	非開裂混凝土的特性黏結應力 6.7	T _{uner}	kgf/cm ²		105	105	105	105
Temp. range B [§]	開裂混凝土的特性黏結應力 6.7	T _{cr}	kgf/cm ²		47	47	47	47
Ten B	非開裂混凝土的特性黏結應力 6.7	T _{uner}	kgf/cm ²		97	97	97	97
Temp. range C ⁵	開裂混凝土的特性黏結應力 6.7	T _{cr}	kgf/cm ²		420	420	420	420
ran ran	非開裂混凝土的特性黏結應力 6,7	Tuncr	kgf/cm ²		865	865	865	865
地震拉力的	杓折減	α _{N,seis}	-			1.0		
ŦΚ	また \ロ \v2 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	錨栓類別	-			1		
资件	乾混凝土黏結破壞的強度折減係數 	Φ _d	-			0.65		
允許的安裝 條件		錨栓類別	-			1		
$\not \in$	水飽和混凝土黏結破壞的強度折減係數	Φ _{ws}	-			0.65		

- 1 此表格中的設計資訊是以根據 ACI 355.4 進行的測試為基礎。 2 見圖 4。
- ∠ 戸園 4。
 3 For all design cases, Ψ_{cN} = 1.0. 拉破阻力的適當係數: 開裂混凝土 (k_{c,cl}) 或非開裂混凝土 (k_{c,uncr}) 必須使用。
 4 在條件 B 下, 當未使用 ACI 318/土木 401 17.3.3 所述補充鋼筋時, 為後置式錨栓提供的值。
 對於可確認存在補充鋼筋的情況, 可使用與條件 A 相關的折減係數。
 5 溫度範圍 A: 最高短期溫度 = 130°F (55°C)、最高長期溫度 = 110°F (43°C)。

- 溫度範圍 B: 最高短期溫度 = 176°F (80°C)、最高長期溫度 = 110°F (43°C)。
- 温度範圍 C: 最高短期溫度 = 248°F (120°C), 最高長期溫度 = 162°F (72°C)。 混凝土溫度的短期提升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土溫度會在相當長的一段時間內保持大致恆定。

- 7 特性黏結強度僅限水平和垂直向下的方向。對於倒吊施工 (垂直向上) 安裝, 黏結強度必須乘以 0.70。

8
$$c_{ac} = h_{ef} \cdot \left(\frac{\tau_{k,uncr}}{1,160}\right)^{0.4} \cdot \left[3.1 - 0.7 \cdot \frac{h}{h_{ef}}\right]$$
, where
$$\frac{h}{h_{ef}} \, \text{不得大於 } 2.4, \; 以及$$

$$\tau_{k,uncr} \, \text{不得大於 } \tau_{k,uncr} = \frac{\tau_{k,uncr} \, \sqrt{h_{ef} \cdot f'_{c}}}{\pi \cdot d_{a}} \quad (在所有公式中使用英制單位)$$

表 9 — 符合 ACI 318/土木 401 第 17 章標準的 HVU2 錨栓膠囊設計資訊和喜利得 HIS-N 和 HIS-RN 內牙螺桿 1,2

鑽石空心鑽孔

ウ壯次却		符號	單位			標準螺栓/螺絲	(英吋)	
安裝資訊		付號	単位	M8	M10	M12	M16	M20
溫度範圍 A ³	開裂混凝土的特性黏結應力 4.5	T _{cr}	kgf/cm²	36	36	36	36	36
△── 反 判 目 A ·	非開裂混凝土的特性黏結應力 4.5	T _{uncr}	kgf/cm²	99	99	99	99	99
	開裂混凝土的特性黏結應力 4,5	T _{cr}	kgf/cm²	33	33	33	33	33
溫度範圍 B ³	非開裂混凝土的特性黏結應力 4.5	T _{uncr}	kgf/cm²	94	94	94	94	94
四中等国 0.3	開裂混凝土的特性黏結應力 4,5	T _{cr}	kgf/cm²	21	21	21	21	21
温度範圍 C 3 -	非開裂混凝土的特性黏結應力 4.5	T _{uncr}	kgf/cm²	60	60	60	60	60
地震拉力的折減		α _{N,seis}	-			1.0		

- 1 此表格中的設計資訊是以根據 ACI 355.4 進行的測試為基礎。
 2 表 12 中的項目 (d₂, h_m, h_{mm}, c₂, c_{mm}, s_{mm}, k_{c,m}, and Φ factors)適用於本表的鑽石洗孔。
 3 溫度範圍 A: 最高短期溫度 = 130°F (55°C)、最高長期溫度 = 110°F (43°C)。
 溫度範圍 B: 最高短期溫度 = 176°F (80°C)、最高長期溫度 = 110°F (43°C)。
- 溫度範圍 C:最高短期溫度 = 248°F (120°C)、最高長期溫度 = 162°F (72°C)。 混凝土溫度的短期提升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土溫度會在相當長的一段時間內保持大致恆定。
- 4 對應至混凝土抗壓強度的點結強度值 f' = 175 kgf/cm² (17.2 MPa) 對於介於 175 kgf/cm² (17.2 MPa) 和 560 kgf/cm² (55.2 MPa) 之間的混凝土抗壓強度f′。表列的特性黏結強度可能依 (f′ /2,500)n [對於 SI : (f′ / 17.2)n] 的係數增加,其中 n 如下所示: n = 0 適用非開裂混凝土、所有鑽孔方式
- n = 0.18 適用於開裂混凝土, 鑽石空心鑽頭
- 5 特性黏結強度僅限水平和垂直向下的方向。對於倒吊施工(垂直向上)安裝,黏結強度必須乘以 0.70。

表 10 — 喜利得 HIS-N 和 HIS-RN 內牙螺桿的鋼質螺栓 / 螺絲的鋼材設計強度^{1,2,3}

		ASTM A193 B7		ASTM A193 等級 B8M 不銹鋼			
螺紋尺寸	拉力⁴ φN _{sa} kgf (kN)	剪力⁵ φV _{sa} kgf (kN)	抗震剪力 ⁶ φV _{sa,eq} kgf (kN)	拉力⁴ φN _{sa} kgf (kN)	剪力⁵ φV _{sa} kgf (kN)	抗震剪力 ⁶ φV _{sa,eq} kgf (kN)	
M10	2,858	1,583	1,109	2,513	1,393	975	
IVITU	(28.0)	(15.5)	(10.9)	(24.6)	(13.7)	(9.6)	
M12	5,230	2,896	2,028	4,602	2,549	1,785	
IVIIZ	(51.3)	(28.4)	(19.9)	(45.1)	(25.0)	(17.5)	
M16	8,330	4,613	3,230	7,330	4,060	2,842	
IVITO	(81.7)	(45.2)	(31.6)	(71.9)	(39.8)	(27.9)	
1400	12,329	6,829	4,781	10,848	6,008	4,205	
M20	(120.9)	(67.0)	(46.9)	(106.4)	(58.9)	(41.2)	

- 1 請參閱第 3.1.8 節將設計強度(係數阻力)值轉換為 ASD 值。
- 2 且有鋼質螺栓的 Hilti HIS-N 和 HIS-BN 內牙螺桿可視為脆性鋼質元件。
- 3 表列值是指 HIS-N 內牙螺桿的鋼材破壞值和插入的鋼鐵螺栓的鋼材破壞值中的較小者。

表 11 — 對於在開裂混凝土中安裝的喜利得 HIS-N 和 HIS-RN 內牙螺桿, 喜利得 HVU2 化學藥劑的 設計強度與混凝土 / 黏結破壞之較小值 1,2,3,4,5,6,7,8,9

使用碳化鎢鑽頭,或是喜利得 TE-CD 或 TE-YD 空心鑽頭進 行電錘鑽孔

錨栓緊固技術指引

			拉力 –	- ΦN _n		剪力 — ΦV"				
螺紋尺寸	有效埋深 (mm)	$f'_{c} = 175 \text{ kgf/cm}^2 \text{ kgf (kN)}$	f'_{c} = 210 kgf/cm ² kgf (kN)	f' c = 280 kgf/cm ² kgf (kN)	f'_{c} = 420 kgf/cm ² kgf (kN)	$f'_{c} = 175 \text{ kgf/cm}^2 \text{ kgf (kN)}$	f'_c = 210 kgf/cm ² kgf (kN)	f'_c = 280 kgf/cm ² kgf (kN)	f'_c = 420 kgf/cm ² kgf (kN)	
M10	110	3,239	3,547	3,924	3,924	6,974	7,638	8,453	8,453	
MITO	110	(31.8)	(34.8)	(38.5)	(38.5)	(68.4)	(74.9)	(82.9)	(82.9)	
M12	125	3,955	4,334	5,003	5,591	8,521	9,333	10,777	12,038	
IVI I Z	125	(38.8)	(42.5)	(49.1)	(54.8)	(83.6)	(91.5)	(105.7)	(118.1)	
M40	170	6,205	6,797	7,849	9,317	13,363	14,640	16,903	20,065	
M16	170	(60.9)	(66.7)	(77.0)	(91.4)	(131.0)	(143.6)	(165.8)	(196.8)	
M00	225	8,194	8,977	10,365	12,222	17,649	19,332	22,324	26,326	
M20	205	(80.4)	(88.0)	(101.6)	(119.9)	(173.1)	(189.6)	(218.9)	(258.2)	

表 12 — 對於在開裂混凝土中安裝的喜利得 HIS-N 和 HIS-RN 內牙螺桿, 喜利得 HVU2 化學藥劑的 設計強度與混凝土 / 黏結破壞之較小值 1,2,3,4,5,6,7,8,9,10

14.4	H13577770	, , , , , , , , , , , , , , , , , , , ,							
			拉力 -	$-\Phi N_n$			剪力 -	$-\Phi V_n$	
螺紋尺寸	有效埋深 (mm)	f' _c = 175 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f'_c = 280 kgf/cm ² kgf (kN)	f'_{c} = 420 kgf/cm ² kgf (kN)	$f'_{c} = 175 \text{ kgf/cm}^2 \text{ kgf (kN)}$	f'_c = 210 kgf/cm ² kgf (kN)	f'_c = 280 kgf/cm ² kgf (kN)	f'_c = 420 kgf/cm ² kgf (kN)
M10	440	1,910	2,003	2,157	2,397	4,114	4,314	4,647	5,164
MIU	110	(18.7)	(19.6)	(21.2)	(23.5)	(40.3)	(42.3)	(45.6)	(50.6)
1440	405	2,719	2,851	3,073	3,416	5,858	6,142	6,620	7,355
M12	125	(26.7)	(28.0)	(30.1)	(33.5)	(57.4)	(60.2)	(64.9)	(72.1)
M16	170	4,395	4,754	5,121	5,693	9,466	10,238	11,031	12,258
IVI I b	170	(43.1)	(46.6)	(50.2)	(55.8)	(92.8)	(100.4)	(108.2)	(120.2)
1400	205	5,804	6,237	6,720	7,468	12,501	13,431	14,474	16,084
M20	205	(56.9)	(61.2)	(65.9)	(73.2)	(122.6)	(131.7)	(141.9)	(157.7)

- 1 請參閱第 3.1.8 節, 了解荷載值的制定說明。
- 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。
- 不允許埋置深度和混凝土抗壓強度之間的線性內插法。

- 混凝土溫度的短期提升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土溫度會在相當長的一段時間內保持大致恆定。
- 6 表列值適用於乾混凝土或水飽和混凝土條件。
- 表列值僅限短期荷載。對於倒吊施工等可持續荷載,請參閱第 3.1.8 節。

表 13 — 對於在開裂混凝土中安裝的喜利得 HIS-N 和 HIS-RN 內牙螺桿, 喜利得 HVU2 化學藥劑的 設計強度與混凝土 / 黏結破壞之較小值e 1,2,3,4,5,6,7,8,9

鑽石空心鑽孔

HA													
			拉力 -	$-\Phi N_n$		剪力 — ΦV _n							
螺紋尺寸	有效埋深 (mm)	$f'_{c} = 175 \text{ kgf/cm}^2$ kgf (kN)	f'c = 210 kgf/cm² kgf (kN)	f'c = 280 kgf/cm² kgf (kN)	f'_c = 420 kgf/cm ² kgf (kN)	$f'_c = 175 \text{ kgf/cm}^2 \text{ kgf (kN)}$	f'_c = 210 kgf/cm ² kgf (kN)	f'c = 280 kgf/cm² kgf (kN)	f'_c = 420 kgf/cm ² kgf (kN)				
M40	444	3,239	3,547	3,726	3,726	6,974	7,638	8,029	8,029				
M10	111	(31.8)	(34.8)	(36.5)	(36.5)	(68.4)	(74.9)	(78.7)	(78.7)				
M12	127	3,955	4,334	5,003	5,307	8,521	9,333	10,777	11,433				
IVITZ	127	(38.8)	(42.5)	(49.1)	(52.0)	(83.6)	(91.5)	(105.7)	(112.1)				
M16	171	6,205	6,797	7,849	8,847	13,363	14,640	16,903	19,055				
IVITO	1/1	(60.9)	(66.7)	(77.0)	(86.8)	(131.0)	(143.6)	(165.8)	(186.9)				
MOO	000	8,194	8,977	10,365	11,607	17,649	19,332	22,324	25,000				
M20	206	(80.4)	(88.0)	(101.6)	(113.8)	(173.1)	(189.6)	(218.9)	(245.2)				

表 14 — 對於在開裂混凝土中安裝的喜利得 HIS-N 和 HIS-RN 內牙螺桿, 喜利得 HVU2 化學藥劑的 設計強度與混凝土 / 黏結破壞之較小值e 1,2,3,4,5,6,7,8,9,10

鑽石空心鑽孔

121	取引 五及 类													
			拉力 -	- ΦN _n			剪力 -	$-\Phi V_n$						
螺紋尺寸	有效埋深 (mm)	f' _c = 175 kgf/cm ² kgf (kN)	$f'_c = 210 \text{ kgf/cm}^2 \text{ kgf (kN)}$	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	$f'_{c} = 175 \text{ kgf/cm}^2$ kgf (kN)	f'_{c} = 210 kgf/cm ² kgf (kN)	f'_{c} = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)					
	(11111)	rigi (rii i)	rigi (rii v)	rigi (rii i)	rigi (iti i)	rigi (rii v)	1191 (1114)	1191 (1114)	rigi (iti v)					
M10	111	1,331	1,374	1,447	1,558	2,864	2,960	3,118	3,354					
IVITO	111	(13.1)	(13.5)	(14.2)	(15.3)	(28.1)	(29.0)	(30.6)	(32.9)					
M12	127	1,894	1,957	2,062	2,218	4,080	4,216	4,441	4,776					
10112	127	(18.6)	(19.2)	(20.2)	(21.8)	(40.0)	(41.3)	(43.5)	(46.8)					
M16	171	3,157	3,264	3,436	3,697	6,799	7,028	7,400	7,961					
	171	(31.0)	(32.0)	(33.7)	(36.3)	(66.7)	(68.9)	(72.6)	(78.1)					
M20	206	4,144	4,282	4,509	4,849	8,922	9,219	9,709	10,446					
IVIZU		(40.6)	(42.0)	(44.2)	(47.6)	(87.5)	(90.4)	(95.2)	(102.4)					

- 請參閱第 3.1.8 節, 了解荷載值的制定說明。
- 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。
- 研究的形式。他们就可以发展的疾病人心量。 不允許理置深度和混凝土抗壓強度之間的線性內插法。 視需要將表 19 至表 20 的間距、邊距及混凝土厚度係數應用於上方值。與表 14 中的鋼材數值進行比較。較小的值會用於設計。
- 資料適用於溫度範圍 A: 最高短期溫度 = 130°F (55°C)、最高長期溫度 = 110°F (43°C)。 對於溫度範圍 B: 最高短期溫度 = 176°F (80°C)、最高長期溫度 = 110°F (43°C)。 對於溫度範圍 B: 最高短期溫度 = 248°F (120°C)、 最高長期溫度 = 162°F (72°C) 將上方值乘以 0.60。 最高長期溫度 = 162°F (72°C) 將上方值乘以 0.60。 混凝土溫度的短期提升是在較短時間間隔發生的溫度上升,例如因日夜循環而導致的溫升。長期混凝土溫度會在相當長的一段時間內保持大致恆定。

- 表列值通用於乾泥煤土或水飽和混凝土條件。 表列值僅限短期荷載。對於倒吊施工等可持續荷載,請參閱第 3.1.8 節。

- 有關地震應用的其他資訊,請參閱第 3.1.8 節。

安裝說明

安裝使用說明 (IFU) 隨附每個產品包裝。您也可以在線上檢視或下載,網址為 www.hilti.com.tw。因為可能隨時變更,所以請務必確 認下載的 IFU 在使用時為最新版本。為發揮完整效能,請務必正確安裝。可視需求提供培訓。如需了解 IFU 中未涉及的應用和條件, 請聯絡喜利得技術服務。

材料規範

圖 5 - 喜利得 HVU2 化學藥劑固化時間 (約略值)

[°C]	[°F]	t _{cure}
-106	1422	5 h
-51	2331	3 h
04	3240	40 min
59	4149	20 min
1019	5067	10 min
2040	68104	5 min

表 35 — 充分固化 HIT-RE 2 化學藥劑的材料性質

7077 H 10 1111 112 = 1	0 3 MM191.3.	1111-22
73°F (23°C) / 50% 濕度的抗壓強度	11,200 psi	77.30 N/mm ²
抗拉強度	1,241 psi	8.56 N/mm ²
24 小時後的吸水性	0.2	6%

表 36 性能的關鍵:

- 不耐久 + 耐久

S在室溫 (77°F/25°C) 下, 將固化 HVU2 化學藥劑樣品浸入各種 化合物中 90 天。重量增加幅度小於 4% 的樣品評估為「耐久」, 而重量增加幅度大於 6% 的樣品評估為「不耐久」。

附註:在實際使用情況下,大多數化學藥劑被包覆在基材中,且暴 露表面積很小。

表 15 - 完全固化喜利得 HVU2 化學藥劑的抗腐蝕性

錨栓緊固技術指引

3.2.5

八四4-65 /										
化學物質	組件	[濃度 %]	行為							
柴油	測試混合物 A 20/NP 2 生 物柴油	95.0 5.0	+							
乙醇	甲醇	100.0	-							
脂肪族鹵化 碳氫化合物	二氯甲烷	100.0	-							
水性有機活性劑/ 表面活性劑	Texapon N 28 Marlipal O 13/8 水	3.0 2.0 95.0	+							
有機酯和酮	乙酸乙酯甲基異丁酮	50.0 50.0	+							
水性有機酸	水性醋酸 (10%)	100.0	+							
有機酸	醋酸丙酸	50.0 50.0	-							
無機酸	硫酸 (20%)	100.0	+							
脂肪族醛	n-丁醛 n-庚醛	50.0 50.0	+							
環狀醚類和 非環狀醚類	四氫呋喃 (THF)	100.0	-							
碳氫化合物	二甲苯甲基萘	60.0 30.0 10.0	+							
苯和苯混合物	苯-甲苯- 二甲苯混合物 甲基萘	30.0 30.0 30.0 10.0	+							
無機鹼基	氫氧化鈉 (20%)	100.0	+							
胺	三乙醇胺正丁胺 N,N-二甲基苯胺	35.0 30.0 35.0	-							

3.3 機械錨固系統

3.3.1 HDA 自切底錨栓

產品介紹

HDA自切底錨栓

非開裂混凝土

開裂混凝土

地震設計類別 A-F

Profis Engineering

核准/列名認證	
ICC-ES(國際規範委員會)	混凝土中的 ESR-1546 應用符合 ACI 318/ 土木 401 第17 / ACI 355.2/ ICC-ES AC193
歐洲技術核准	ETA-99/0009、ETA-99/0016
	研究報告編號 25939
核子品質保證	符合 NQA-1 核子品質計畫標準

材料規範

HDA-P 和 HDA-T 鍍鋅碳鋼

錐形螺栓符合 ISO 898 類別 8.8 的強度要求。降伏強度為 92.8 ksi (640 MPa),而最小抗拉強度為 116 ksi (800 MPa)。

M10 和 M12 套筒的最小抗拉強度為 123 ksi (850 MPa)。

M16 套筒的最小抗拉強度為 101.5 ksi (700 MPa)。

M20 套筒的最小抗拉強度為 79.8 ksi (550 MPa)。

螺帽和墊片為碳鋼材質。

所有碳鋼組件最少有 5 µm 的鍍鋅層。

HDA-PR 和 HDA-TR 不鏽鋼

錐形螺栓的降伏強度為 87 ksi (600 MPa), 而最小抗拉強度為 116 ksi (800 MPa)。

M10 和 M12 套筒的最小抗拉強度為 123 ksi (850 MPa)。

M16 套筒的最小抗拉強度為 101.5 ksi (700 MPa)。

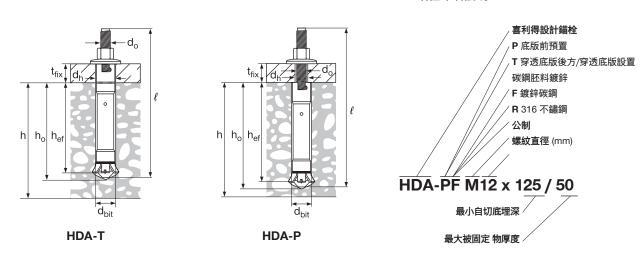
螺帽符合 DIN 934 等級 A4-80 的標準。

HDA-PF 和 HDA-TF 厚鍍鋅碳鋼

錐體螺栓符合 ISO 898 類別 8.8 的強度要求。降伏強度為 92.8 ksi (640 MPa),而最小抗拉強度為 116 ksi (800 MPa)。

M10 和 M12 套筒的最小抗拉強度為 123 ksi (850 MPa)。

M16 套筒的最小抗拉強度為 101.5 ksi (700 MPa)。


螺帽和墊片為碳鋼材質。

所有碳鋼組件的平均鍍鋅厚度都有 53 μm, 符合 ASTM A153 標準。

安裝參數

圖 1 - 喜利得 HDA 規格

錨栓命名說明

表 1 - 喜利得 HDA 規範

			標準錨栓直徑					
安裝資訊	符號	單位	M10	M12	M16	M20		
錐體螺栓螺紋直徑	d。	mm	10	12	16	20		
標準鑽頭直徑1	d _{bit}	mm	20	22	30	37		
有效最小埋深	h _{ef}	mm	100	125	190	250		
孔深	h _o	mm	107	135	203	266		
最大被固定物厚度,HDA-P	t _{fix}		請參閱第 3.3.1 節					
被固定物孔直徑,HDA-P	d _h	mm	12	14	18	22		
最大被固定物厚度,HDA-T	t _{fix}			請參問	揭表 5			
被固定物孔直徑,HDA-T	d _h	mm	21	23	32	40		
錨栓長度	l			請參閱第	3.3.1 節			
最小混凝土厚度 ²	h _{min}	mm	180	200	270	350		
	T _{inst}	Nm	50	80	120	300		
扳手尺寸		mm	17	19	24	30		

用於混凝土的設計資料符合 ACI 318/土木 401 標準

ACI 318/土木 401 第 17 章設計

本節所包含的荷載值為喜利得簡化設計表。本節荷載表係使用強度設計參數和 ESR-1546變量,以及 ACI 318/土木 401 第 17 章 內的公式制定而成。如需喜利得簡化設計表的詳細解釋,請參閱第 3.1.8 節。ESR-1546 資料表不包含在本節,但可在以下網址參 閱: www.icc-es.org or at www.hilti.com.tw.

表 2 — 非開裂混凝土中混凝土/拔出破壞的喜利得 HDA-P 和 HDA-T 碳鋼和不鏽鋼設計強度^{1,2,3,4,5}

			拉力	- φN _n			剪力	- φV _n	
標準錨栓 直徑	有效埋深 (mm)	f'c = 175 kgf/cm² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	f'c = 175 kgf/cm² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)
M10 100	100	3,454	3,785	4,370	5,352	7,441	8,151	9,412	11,528
IVITO	100	(33.9)	(37.1)	(42.9)	(52.5)	(73.0)	(79.9)	(92.3)	(113.1)
M12	125	4,828	5,289	6,108	7,480	10,399	11,392	13,154	16,109
IVIIZ	123	(47.4)	(51.9)	(59.9)	(73.4)	(102.0)	(111.7)	(129.0)	(158.0)
M16	190	9,047	9,911	11,444	14,016	19,489	21,348	24,650	30,191
IVI I O	190	(88.7)	(97.2)	(112.2)	(137.4)	(191.1)	(209.4)	(241.7)	(296.1)
Man	250	13,655	14,959	17,273	21,156	29,413	32,221	37,206	45,568
M20		(133.9)	(146.7)	(169.4)	(207.5)	(288.4)	(316.0)	(364.9)	(446.9)

表 3 — 在開裂混凝土中喜利得 HDA-P 和 HDA-T 碳鋼和不鏽鋼的設計強度與混凝土/拔出破壞1,2,3,4,5

			拉力	- φN _n			剪力	- φV _n	
標準錨栓 直徑	有效埋深 (mm)	$f'_{c} = 175 \text{ kgf/cm}^2 \text{ kgf (kN)}$	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	$f'_{c} = 175 \text{ kgf/cm}^2 \text{ kgf (kN)}$	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)
M10	100	2,651	2,905	3,354	4,107	5,953	6,520	7,530	9,222
IVITO	100	(26.0)	(28.5)	(32.9)	(40.3)	(58.4)	(63.9)	(73.8)	(90.4)
M12	125	3,313	3,631	4,191	5,135	8,319	9,113	10,523	12,889
IVIIZ		(32.5)	(35.6)	(41.1)	(50.4)	(81.6)	(89.4)	(103.2)	(126.4)
M16	190	6,629	7,260	8,385	10,269	15,590	17,078	19,720	24,152
IVITO	190	(65.0)	(71.2)	(82.2)	(100.7)	(152.9)	(167.5)	(193.4)	(236.8)
M20	250	9,943	10,891	12,576	15,402	23,530	25,778	29,765	36,453
10120	230	(97.5)	(106.8)	(123.3)	(151.0)	(230.8)	(252.8)	(291.9)	(357.5)

請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。

錨栓緊固技術指引

HDA 必須與指定的 Hilti 鎚鑽和 Hilti 公制制動鑽頭一起安裝。 請參閱第 3.3.1.5 節。 HDA-P 的最小混凝土厚度。 對於 HDA-T,需要額外的厚度來考慮薄的被固定物,這將增加有效埋深。 利用 TE 70 安装錨栓時,對於 HDA M16, $h_{\min} \ge 300mm$ (11,8in)

不允許埋置深度和混凝土抗壓強度之間的線性內插法。

視需要應用表 6 至表 9 的間距、邊距及混凝土厚度係數。與表 4 和表 5 中的鋼材數值進行比較。較小的值會用於設計。

表格值僅適用於普通重量的混凝土。 對於輕質混凝土,設計載荷乘以 λ。 = 0.68。

表列值僅限靜態荷載。非開裂混凝土不允許進行抗震設計。對於地震拉力荷載,只將拉力的開裂混凝土表列值乘以 α_{N.see} = 0.75。抗震剪力不需要折減。有關地震應用的其他資訊,請參閱第 3.1.8 節。

表 4 - 喜利得 HDA-P 碳鋼和不鏽鋼錨栓的鋼材強度^{1,2}

		HDA-P 碳鋼錨栓		F	IDA-PR 不鏽鋼錨村	全
標準錨栓	拉力 φN _{sa} ³ lb (kN)	剪力 φV _{sa} ⁴ lb (kN)	地震剪力 $\phi V_{ m sa,eq}^{\phantom 5}$ lb (kN)	拉力 φN _{sa} ³ lb (kN)	剪力 φV _{sa} ⁴ lb (kN)	地震剪力 φV _{sa,eq} ⁵ lb (kN)
M10	3,552	1,479	1,324	3,552	1,789	1,658
M10	(34.8)	(14.5)	(13.0)	(34.8)	(17.5)	(16.3)
M12	5,169	2,148	1,921	5,169	2,651	2,386
IVII∠	(50.7)	(21.1)	(18.8)	(50.7)	(26.0)	(23.4)
M16	9,589	3,996	3,579	9,589	4,971	4,441
IVI I O	(94.0)	(39.2)	(35.1)	(94.0)	(48.8)	(43.5)
M20	14,996	6,123	5,502	2/0	2/0	2/2
IVIZU	(147.1)	(60.1)	(54.0)	n/a	n/a	n/a

- 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。

- 1 請參 网易 7.1.6 即所政目 知後 [国等 (ASD 16)
 2 喜利得 HDA-P 碳鋼和不鏽鋼錨栓被視為韌性鋼鐵元件
 3 張力 = φN_{so} = φ Φ _{so,N} t_{sta}, 如 ACI 318/ CIVIL 401 第 17 章所述。
 4 剪力值由使用 φV_{so} < φ 0.60 A_{so,V} t_{sta} 的静態剪力測試判定,如 ACI 318/ CIVIL 401 第 17 章所述。
 5 地震剪力值由使用 φV_{so} ≤ φ 0.60 A_{so,V} t_{sta} 的地震剪力測試判定,如 ACI 318/ CIVIL 401 第 17 章所述。
 有關地震應用的其他資訊,請參閱第 3.1.8 節。

表 5 — 喜利得 HDA-T 碳鋼和不鏽鋼錨栓的鋼材強度^{1,2}

			HDA-T 碳鋼錨栓		ŀ	IDA-TR 不鏽鋼錨村	£
標準錨栓直徑	緊固零件厚度 t _{fix} (mm)	拉力φN _{sa} ³ kgf (kN)	剪力φV _{sa} ⁴ kgf (kN)	地震剪力 $\phi V_{ m sa,eq}^{\phantom 5}$ kgf (kN)	拉力 φN _{sa} ³ kgf (kN)	剪力 φV _{sa} ⁴ kgf (kN)	地震剪力 φV _{sa,eq} ⁵ kgf (kN)
1440		3,552	4,110	3,713	3,552	4,572	4,110
M10	$(15 \le t_{fix} \le 20)$	(34.8)	(40.3)	(36.4)	(34.8)	(44.8)	(40.3)
			4,906	4,441		5,967	5,302
N440	(15 ≤ t _{fix} < 20)	5,169	(48.1)	(43.5)	5,169	(58.5)	(52.0)
M12		(50.7)	5,502	4,906	(50.7)	6,561	5,899
	$(20 \le t_{fix} \le 50)$		(54.0)	(48.1)		(64.3)	(57.8)
			9,015	8,085		10,539	9,480
	(20 ≤ t _{fix} < 25)	9,589	(88.4)	(79.3)	9,589	(103.4)	(93.0)
			10,208	9,215		11,136	10,009
M16	$(25 \le t_{fix} < 30)$		(100.1)	(90.4)		(109.2)	(98.1)
IVI I O		(94.0)	11,269	10,140	(94.0)	11,664	10,473
	$(30 \le t_{fix} < 35)$		(110.5)	(99.4)		(114.4)	(102.7)
			12,195	10,936		12,063	10,870
	$(35 \le t_{fix} \le 60)$		(119.6)	(107.2)		(118.3)	(106.6)
			13,322	11,998			
	(25 ≤ t _{fix} < 40)		(130.6)	(117.7)			
1400		14,996	14980	13456	1	- /-	- /-
M20	$(40 \le t_{fix} < 55)$	(147.1)	(146.9)	(132.0)	n/a	n/a	n/a
			16107	14517			
	$(55 \le t_{fix} \le 100)$		(158.0)	(142.4)			

- 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。 喜利得 HDA-T 碳鋼和不鏽鋼錨栓被視為韌性鋼鐵元件。

安裝和拆卸說明

安裝使用說明 (IFU) 隨附每個產品包裝。您也可以在線上檢視或下載,網址為 www.hilti.com.tw。因為可能隨時變更,所以請務必 確認下載的 IFU 在使用時為最新版本。為發揮完整效能,請務必正確安裝。

HDA 自切底錨栓可完全拆卸。基於安全目的,拆卸過程會磨損錨栓螺紋,以防止重複使用錨栓。

可視需求提供培訓。如需了解 IFU 中未涉及的應用和條件,請聯絡喜利得技術服務。

3.3.2 HSL4 重型膨脹錨栓

產品介紹

功能和優勢

- 核准用於混凝土受拉力區 (開裂混凝土)
- 經認證可用於喜利得鑽石空心工具 DD-30 或 DD-EC-1 (搭配 SPX-T 空心鑽頭)或喜利得鑽石 洗孔工具 DD-110 至 DD-250 (搭配 SPPX-H, SPX-L 或 SPX-L手持式空心鑽頭) 所鑽的孔。
- 用於 ACI 318/土木 401 第 17 章和 ACI 349 附錄 B 之強度設計規定的資料
- 高荷載能力
- 允許後續膨脹的應力控制膨脹
- 適合地震1、疲勞及衝擊等動態荷載
- 鎖緊螺栓或螺帽時不得使錨栓在孔中轉動
- 根據 ICC-ES AC193 及 ACI 318/土木 401 第 17 章要求的地震規範

¹ HSL4-G M24 未核准用於地震設計。

非開裂混凝土

開裂混凝土

鑽石空心孔

用於開裂混凝土和

非開裂混凝土

地震設計類別

Profis Engineering 錨栓設計軟體

空心鑽頭

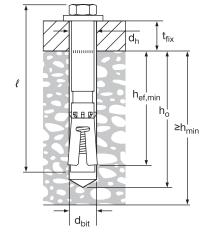
核准/列名認證	
ICC-ES(國際規範委員會)	混凝土中的 ESR-4386 符合 ACI 318/土木 401 第 17 章/ACI 355.2/ICC-ES AC193 標準
歐洲技術核准	ETA-19/0556
洛杉磯市	2020 年 LABC 補充說明(符合 ESR-4386 標準)
核子品質保證	符合 NQA-1 核子品質計畫標準

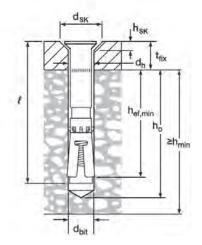
材料規範

f_{uta} > 116 ksi.

螺帽、墊片、膨脹錐體、膨脹套筒及間距套筒均為碳鋼材質。

可折疊套筒由聚甲醛 (POM) 樹脂和熱塑性彈性體 (TPE) 製成。


安裝參數


表 1 - HSL4 規格

詳情								HS	SL4 錨核	全螺紋直徑									
H I Irs			N	18	M	10		M12		M16		M	20	M24					
標準鑽頭直徑1	d _{bit}	mm	1	2	1	5		18		2	4	28		32					
最小混凝土厚度	h _{min}	mm							請參	閱表 5									
最小孔深	h _o	mm	8	0	9	0		105		12	25	15	55	18	30				
有效最小埋深	h _{ef,min}	mm	6	0	7	0		80		10	00	12	25	15	50				
被固定物孔直徑	d _h	mm	1	4	1	7		20		2	6	3	1	35					
緊固零件 HSL4、 HSL4-B 最大厚度	t _{fix}	mm	20	40	20	40	5	25	50	30	60	30	60	30	60				
緊固零件 HSL4-G 最大厚度	t _{fix}	mm	2	0	20	100	25		50	25	50	30	60	-	-				
墊片直徑	d _w	mm	2	0	25			30		4	0	4	5	5	0				
安裝扭矩 HSL4	T _{inst}	Nm	1	5	2	5	60		75		145		210						
安裝扭矩 HSL4-G	T _{inst}	Nm	2	0	2	7		60		70		105		180					
安裝扭矩 HSL4-SK	T _{inst}	Nm	2	5	3	2		65		-	-	-	-	-	-				
扳手尺寸 HSL4、HSL4-G	套筒	mm	1	13		13		7	19			24		24		30		3	6
扳手尺寸 HSL4-B	套筒	mm	-	-		-	24		30		36		4	1					
扳手尺寸 HSL4-SK	套筒	mm	Ę	5	6	3	8		-		-		-	-					
錐坑孔直徑 HSL4-SK	d _{sk}	mm	22	2.5	25	5.5		32.9		-		-		-					

¹僅限使用公制鑽頭。

用於混凝土的設計資料符合 ACI 318/土木 401 標準

ACI 318/土木 401 第 17 章設計

本節所包含的荷載值為喜利得簡化設計表。本節荷載表係使用強度設計參數和 ESR-4386 變量, 以及 ACI 318/土木 401 第 17 章內 的公式制定而成。ESR-4386 資料表不包含在本節,但可在以下網址參閱: www.icc-es.org 或 www.hilti.com.tw。

表 2 — 在非開裂混凝土中, 喜利得 HSL4 的設計強度與混凝土/拔出破壞1,2,3,4,5

			拉力	- φN _n			剪力	- φV _n	
標準錨栓直徑	有效埋深 (mm)	f' _c = 175 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)
M8	60	1,241 (12.2)	1,359 (13.3)	1,567 (15.4)	1,921 (18.8)	1,383 (13.6)	1,515 (14.9)	1,751 (17.2)	2,143 (21.0)
M10	70	1,619 (15.9)	1,774 (17.4)	2,048 (20.1)	2,508 (24.6)	3,486 (34.2)	3,819 (37.5)	4,409 (43.2)	5,400 (53.0)
M12	80	1,978 (19.4)	2,166 (21.2)	2,502 (24.5)	3,064 (30.0)	4,259 (41.8)	4,665 (45.7)	5,389 (52.8)	6,600 (64.7)
M16	100	2,765 (27.1)	3,028 (29.7)	3,495 (34.3)	4,282 (42.0)	5,953 (58.4)	6,520 (63.9)	7,530 (73.8)	9,222 (90.4)
M20	125	5,078 (49.8)	5,561 (54.5)	6,423 (63.0)	7,865 (77.1)	10,936 (107.2)	11,979 (117.5)	13,832 (135.6)	16,942 (166.1)
M24	150	11,195	12,260	14,160	17,340 (77.1)	24,110 (107.2)	26,410 (117.5)	30,495 (135.6)	37,350 (166.1)

表 3 - 在開裂混凝土中, 喜利得 HSL4 的設計強度與混凝土/拔出破壞1,2,3,4,5

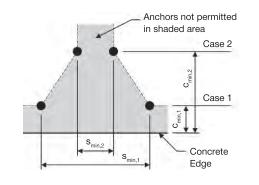
			拉力	- φN _n			剪力	- φV _n	
標準錨栓直徑	有效埋深 (mm)	f' _c = 175 kgf/cm ² kgf (kN)	f'_{c} = 210 kgf/cm ² kgf (kN)	f' c = 280 kgf/cm² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	f'_{c} = 210 kgf/cm ² kgf (kN)	f' = 280 kgf/cm² kgf (kN)	f'c = 420 kgf/cm ² kgf (kN)
M8	60	828 (8.1)	907 (8.9)	1,048 (10.3)	1,284 (12.6)	980 (9.6)	1,073 (10.5)	1,238 (12.1)	1,517 (14.9)
M10	70	1,324 (13.0)	1,451 (14.2)	1,676 (16.4)	2,053 (20.1)	3,486 (34.2)	3,819 (3.5)	4,409 (43.2)	5,400 (53.0)
M12	80	1,978 (19.4)	2,166 (21.2)	2,502 (24.5)	3,064 (30.0)	4,259 (41.8)	4,665 (45.7)	5,389 (52.8)	6,600 (64.7)
M16	100	2,765 (27.1)	3,028 (29.7)	3,495 (34.3)	4,282 (42.0)	5,953 (58.4)	6,520 (63.9)	7,530 (73.8)	9,222 (90.4)
M20	125	8,515 (37.9)	9,330 (41.5)	10,770 (47.9)	13,190 (58.7)	18,340 (81.6)	9,113 (89.4)	10,523 (103.2)	12,889 (126.4)
M24 ⁵	150	11,195 (49.8)	12,260 (54.5)	14,160 (63.0)	17,340 (77.1)	24,110 (107.2)	26,410 (117.5)	30,495 (135.6)	37,350 (166.1)

錨栓緊固技術指引

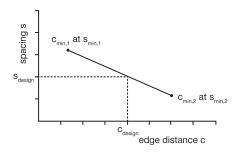
¹ See PTG Ed.21 第 3.1.8 節將設計強度值轉換為 ASD 值。
2 不允許混凝土抗壓強度之間的線性內插法。
3 視需要應用表 5 至表 8 的間距、邊距及混凝土厚度係數。與表 4 中的鋼材數值進行比較。較小的值會用於設計。
4 表列值僅限於額定重量混凝土。對於輕質混凝土,將設計強度如下所示乘以 λ。:對於輕質砂混凝土,λ。= 0.68;對於全輕質混凝土,从。= 0.60。
5 表列值僅限靜態荷載。非開裂混凝土不允許進行抗震設計。對於所有其他錨栓的地震拉力荷載,只將拉力的開裂混凝土表列值乘以 M24 - α_{λ,sola} = 0.62,HSL4-G M24未核准用於地震設計。其他尺寸 - α_{λ,sola} = 0.75 抗震剪力不需要折減。請參閱 PTG Ed.21 第 3.1.8 節,了解地震應用的其他資訊。

表 4 - 喜利得 HSL4 錨栓的鋼材強度^{1,2}

	HSI	L4, HSL4-B, HSL4-	SK		HSL4-G	
標準錨栓 直徑	拉力³ φN _{sa} kgf (kN)	剪力⁴ φV _{sa} kgf (kN)	抗震剪力 ⁵ φV _{sa,eq} kgf (kN)	拉力³ φN _{sa} kgf (kN)	剪力⁴ φV _{sa} kgf (kN)	抗震剪力 ⁵ φV _{sa,eq} kgf (kN)
M8	2,250	2,134	1,359	2,250	1,789	1,114
	(22 .1)	(20 .9)	(13 .3)	(22 .1)	(17 .5)	(10 .9)
M10	3,552	3,016	2,492	3,552	2,472	2,041
	(34 .8)	(29 .6)	(24 .4)	(34 .8)	(24 .2)	(20 .0)
M12	5,169	4,341	3,506	5,169	3,586	2,896
	(50 .7)	(42 .6)	(34 .4)	(50 .7)	(35 .2)	(28 .4)
M16	9,589	7,874	7,310	9,589	6,688	6,210
	(94 .0)	(77 .2)	(71 .7)	(94 .0)	(65 .6)	(60 .9)
M20	14,996	11,653	8,591	14,996	9,777	7,212
	(147 .1)	(114 .3)	(84 .2)	(147 .1)	(95 .9)	(70 .7)
M24	21,586 (211 .7)	13,549 (132 .9)	11,254 (110 .4)	21,586 (211 .7)	12,728 (124 .8)	n/a


表 5 - 邊距、間距及混凝土厚度要求1

					標準錨栓直徑					
條件		尺寸參數	符號	單位	M8	M10	M12	M16	M20	M24
	最小混凝土		h _{min}	mm	120	140	160	200	250	300
	臨界邊距		Cac	mm	110	110	120	150	225	225
Α	案例 1	最小邊距	C _{min,1}	mm	60	70	90	120	125	150
A	采[7] 「	最短錨栓間距	S _{min,1}	mm	140	240	280	320	350	300
	案例 2	最小邊距	C _{min,2}	mm	85	125	155	200	210	210
	未79.2	最短錨栓間距	S _{min,2}	mm	60	70	80	100	125	150
	最小混凝土	厚度	h _{min}	mm	110	120	135	160	190	225
	臨界邊距		C _{ac}	mm	150	175	200	250	312 .5	375
В	案例 1	最小邊距	C _{min,1}	mm	60	90	110	160	200	225
Б	采[7] 「	最短錨栓間距	S _{min,1}	mm	180	260	320	380	400	380
	案例 2	最小邊距	C _{min,2}	mm	100	160	200	270	300	320
	未79.2	最短錨栓間距	S _{min,2}	mm	60	70	80	100	125	150


¹ 案例 1 和案例 2 之間允許使用線性內插法建立邊距和間距組合。 Linear interpolation for a specific edge distance c, where c_{min.1} < c < c_{min.2} 會判定如下所示的容許間距:

$$S \geq S_{\text{min},2} + \frac{\left(S_{\text{min},1} - S_{\text{min},2}\right)}{\left(C_{\text{min},1} - C_{\text{min},2}\right)} \left(C - C_{\text{min},2}\right)$$

圖 2

間距計算方式如下所示:

安裝說明

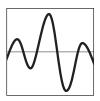
安裝使用說明 (IFU) 隨附每個產品包裝。您也可以在線上檢視或下載,網址為 www.hilti.com.tw。因為可能隨時變更,所以請務必確認 下載的 IFU 在使用時為最新版本。為發揮完整效能,請務必正確安裝。可視需求提供培訓。如需了解 IFU 中未涉及的應用和條件,請聯 絡喜利得技術服務。

¹ 請參閱 PTG Ed.21 第 3.1.8 節將設計強度值轉換為 ASD 值。
2 喜利得 HSL4 碳鋼錐栓被視為韌性鋼鐵元件。
3 張力 = φN。= φ Α。, f ω, α ACI 318/ CIVIL 401 第 17 章所述。
4 剪力值由使用 φV。
 4 剪力值由使用 φV。
 4 9 力值由使用 φV。
 4 9 力值由使用 φV。
 4 9 力值由使用 φV。
 5 地震剪力值由使用 φV。
 4 9 力值由使用 φV。
 6 0 6 0 A。
 7 0 6

3.3.3 HSL-3-R 重型不鏽鋼膨脹錨栓

產品介紹

HSL-3-R 重型不鏽鋼膨脹錨栓



非開裂混凝土

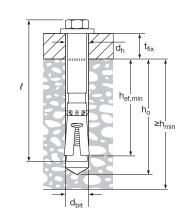
開裂混凝土

地震設計類別 A-F

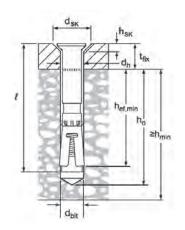
Profis Engineering 錨栓設計軟體

列名認證/核准	
ICC-ES (國際規範委員會)	ESR-1545
歐洲技術核准	ETA-02/0042
洛杉磯市	ESR 的 LABD 補充說明

MATERIAL SPECIFICATIONS


- 符合 DIN EN 10088-3 標準的不鏽鋼螺栓或螺桿。
- 符合 DIN EN 10088-3 標準的不鏽鋼墊片。
- 符合 ASTM A 276/276A 標準的不鏽鋼膨脹套筒。
- 符合 ASTM A 511/A 511M 標準的不鏽鋼間距套筒。
- 符合 ASTM A 511/A 511M 標準的不鏽鋼膨脹錐體。
- 可折疊套筒由聚甲醛 (POM) 樹脂製成。

安裝參數


表 1 — HSL-3-R 規範

詳情	符號	單位					標準錨	栓直徑				
莊· 月	1寸5%	単 型	N	18	М	10	М	12	М	16	М	20
標準鑽頭直徑	d _{bit}	mm	1	2	1	5	1	8	2	!4	2	!8
最小混凝土厚度	h _{min}	mm	1:	20	14	40	15	50	20	00	2	50
最小孔深	h。	mm	8	30	9	0	10)5	1:	25	15	55
有效最小埋深	h _{ef,min}	mm	6	60	7	'0	8	0	10	00	12	25
被固定物孔的最小直徑	d _h	mm	1	4	1	7	2	0	2	:6	3	31
固定裝置 HSL-3-SKR 中的錐坑孔 直徑	$d_{_{SK}}$	mm	22	2.5	25	5.5	32	2.9	不证	不適用		適用
固定裝置 HSL-3-SKR 中的沉頭高度	h _{sk}	mm	5	.8	(6		3	不道	適用	不道	適用
緊固零件和混凝土表面之間的 最大累積差距	-	mm		4	,	5		3	!	9	1	2
緊固零件 HSL-3-R 的最大厚度	t _{fix.max}	mm	20	40	20	40	25	50	25	50	30	60
錨栓 HSL-3-R 的整體長度	l	mm	98	118	110	130	131	156	153	178	183	213
緊固零件 HSL-3-GR 的最大厚度	t _{fix,max}	mm	20	100	20	100	25	100	25	100	30	100
錨栓 HSL-3-GR 的整體長度	ℓ	mm	102	182	115	197	139	214	163	238	190	260
固定零件 HSL-3-SKR 的最大厚度	t _{fix,max}	mm	2	20	2	20	2	5	不道	適用	不道	適用
錨栓 HSL-3-SKR 的整體長度	ℓ	mm	9	8	1	10	1:	31	不证	適用	不证	適用
安裝扭矩 HSL-3-R	T _{inst}	Nm	2	25	3	15	8	0	1:	20	20	00
安裝扭矩 HSL-3-GR	T _{inst}	Nm	3	30	5	60	8	0	1:	20	20	00
安裝扭矩 HSL-3-SKR	T _{inst}	Nm	1	8	5	60	8	0	不证	· 適用	不证	 適用
扳手尺寸 HSL-3-R、HSL-3-GR	SW	mm	1	3	1	7	19		24		30	
六角扳手尺寸 HSL-3-SKR	SW	mm		5		6		3	不適用		不適用	

安裝條件中的 HSL-3-R 和 HSL-3-GR (顯示 HSL-3-R)

安裝條件中的 HSL-3-SKR

用於混凝土的設計資料符合 ACI 318/土木 401 標準

ACI 318/土木 401 第 17 章設計

本節的荷載值為喜利得簡化設計表。本節的荷載表在制定時使用了

強度設計參數、ESR-1545 的變量及 ACI 318/土木 401 第 17 章的公式。如需喜利得簡化設計表的詳細解釋, 請參閱喜利得產品技術 指引 2-21 冊第 3.1.8 節。ESR-1545 資料表不包含在本節, 但可在以下網址參閱: www.icc-es.org 或 www.hilti.com.tw。

表 2 — 在非開裂混凝土中, 喜利得 HSL3 的設計強度與混凝土/拔出破壞 1,2,3,4,5

			拉力 -	— ΦN _n			剪力 -	剪力 — ΦV _n			
標準錨栓 直徑 (mm)	有效埋深 深度 (mm)	f' _c = 175 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)		
M8	60	771	785	908	841	1,383	1,515	1,751	2,143		
IVIO	60	(7.6)	(7.7)	(7.9)	(8.3)	(13.6)	(14.9)	(17.2)	(21.0)		
M10	70	1,370	1,501	1,733	2,123	3,486	3,819	4,409	5,400		
IVI IO	70	(13.4)	(14.7)	(17.0)	(20.8)	(34.2)	(37.5)	(43.2)	(53.0)		
M12	80	1,674	1,833	2,116	2,592	4,259	4,665	5,389	6,600		
IVI 12	80	(16.4)	(18.0)	(20.8)	(25.4)	(41.8)	(45.7)	(52.8)	(64.7)		
M46	100	3,109	3,406	3,933	4,817	6,697	7,337	8,471	10,376		
M16	100	(30.5)	(33.4)	(38.6)	(47.2)	(65.7)	(71.9)	(83.1)	(101.8)		
B400	105	4,828	5,289	6,108	7,480	10,399	11,392	13,154	16,109		
M20	125	(47.4)	(51.9)	(59.9)	(73.4)	(102.0)	(111.7)	(129.0)	(158.0)		

表 3 - 在開裂混凝土中, 喜利得 HSL3 的設計強度與混凝土/拔出破壞1,2,3,4,5 1,2,3,4,5,6

標準錨栓	有效埋深		拉力 -	— ΦN _n		— ΦV _n			
直徑 (mm)	深度 (mm)	f' _c = 175 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)
M8	60	630	689	796	975	980	1,073	1,238	1,517
IVIO	/18 60	(6.2)	(6.8)	(7.8)	(9.6)	(9.6)	(10.5)	(12.1)	(14.9)
M10	70	1,132	1,241	1,433	1,753	3,050	3,341	3,858	4,726
IVITO	70	(11.1)	(12.2)	(14.1)	(17.2)	(29.9)	(32.8)	(37.8)	(46.4)
M12	80	1,674	1,833	2,116	2,592	4,259	4,665	5,389	6,600
IVIIZ	00	(16.4)	(18.0)	(20.8)	(25.4)	(41.8)	(45.7)	(52.8)	(64.7)
M16	100	2,765	3,028	3,495	4,282	5,953	6,520	7,530	9,222
IVI IO	100	(27.1)	(29.7)	(34.3)	(42.0)	(58.4)	(63.9)	(73.8)	(90.4)
M20	125	3,499	3,833	4,427	5,420	8,319	9,113	10,523	12,889
IVIZU	125	(34.3)	(37.6)	(43.4)	(53.2)	(81.6)	(89.4)	(103.2)	(126.4)

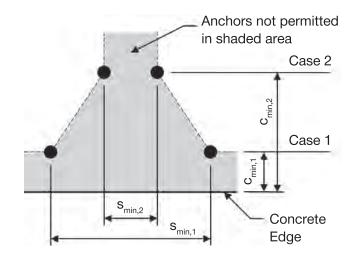
- 1 請參閱第 3.1.6 節, 了解荷載值的制定說明。
- 請參閱第 3.1.9 節將設計強度值轉換為 ASD 值。
- 不允許混凝土抗壓強度之間的線性內插法。 視需要應用表 6 至表 9 的間距、邊距及混凝土厚度係數。與表 4 中的鋼材數值進行比較。較小的值會用於設計。
- 表列值僅限於顏定重量混凝土。對於輕質混凝土,將對於強度加於一次,對於輕質砂混凝土, $\lambda_a = 0.60$ 。表列值僅限於顏定重量混凝土,對於輕質混凝土,於此一次,對於輕質砂混凝土,為 $\lambda_a = 0.60$ 。表列值僅限靜態荷載。非開製混凝土不允許進行抗震設計。對於地震拉力荷載,只將拉力的開製混凝土表列值乘以 $\alpha_{\rm N, nois} = 0.75$ 。
- 如需地震應用的其他資訊, 請參閱喜利得產品技術指引 2-19 冊第 3.1.9 節。

表 4 - 喜利得 HSL-3-R 不鏽鋼錨栓的鋼材強度 1,2

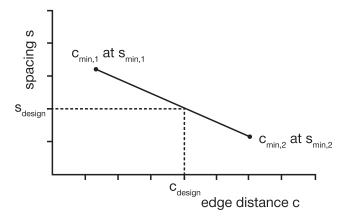
		HSL-3-R			HSL-3-GR		HSL-3-SKR			
標準錨栓直徑 (mm)	拉力³ ФN _{sa} kgf (kN)	剪力 ⁴ ΦV _{sa} kgf (kN)	抗震剪力 ⁵ ΦV _{sa} kgf (kN)	拉力³ ФN _{sa} kgf (kN)	剪力 ⁴ ΦV _{sa} kgf (kN)	抗震剪力 ⁵ ΦV _{sa} kgf (kN)	拉力³ ΦN _{sa} kgf (kN)	剪力 ⁴ ΦV _{sa} kgf (kN)	抗震剪力 ⁵ ΦV _{sa} kgf (kN)	
M8	1,960	2,944	803	1,960	2,672	803	1,960	2,944	803	
IVIO	(19.2)	(28.9)	(7.9)	(19.2)	(26.2)	(7.9)	(19.2)	(28.9)	(7.9)	
M10	3,105	4,155	1,955	3,105	3,910	1,955	3,105	4,155	1,955	
IVITO	(30.4)	(40.7)	(19.2)	(30.4)	(38.3)	(19.2)	(30.4)	(40.7)	(19.2)	
M12	4,513	5,395	2,089	4,513	5,223	2,089	4,513	5,395	2,089	
IVI 12	(44.3)	(52.9)	(20.5)	(44.3)	(51.2)	(20.5)	(44.3)	(52.9)	(20.5)	
M16	8,405	8,498	4,241	8,405	8,591	4,241				
IVI IO	(82.4)	(83.3)	(41.6)	(82.4)	(84.2)	(41.6)	-	-	-	
M20	13,116	9,623	4,241	13,116	10,605	4,241				
IVIZU	(128.6)	(94.4)	(41.6)	(128.6)	(104.0)	(41.6)	_	-	-	

¹ 請參閱第 3.1.9 節將設計強度值轉換為 ASD 值。 2 喜利得 HSL3 不鏽鋼錨栓被視為韌性鋼鐵元件。

表 5 一 邊距、間距及混凝土厚度要求 1


<u> </u>										
	尺寸參數		單位	標準錨栓直徑						
			単 位	M8	M10	M12	M16	M20		
最小混凝土	最小混凝土厚度		mm	120	140	150	200	250		
臨界邊距		C _{ac}	mm	200	280	220	240	380		
 案例1	最小邊距	C _{min.1}	mm	70	90	90	100	150		
采例!	最短錨栓間距	S _{min.1}	mm	140	160	250	240	300		
 案例2	最小邊距	C _{min,2}	mm	120	130	160	240	300		
余げ」と	最短錨栓間距	S _{min.2}	mm	70	90	100	100	125		

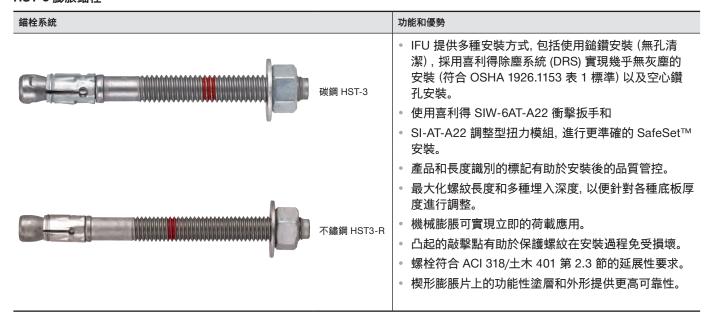
¹ 案例 1 和案例 2 之間允許使用線性內插法建立邊距和間距組合。


針對特定邊距 c 的線性內插法,其中 $c_{min.1} < c < c_{min.2}$ 會判定如下所示的容許間距

$$s \ge s_{\min,2} + \frac{(s_{\min,1} - s_{\min,2})}{(c_{\min,1} - c_{\min,2})} (c - c_{\min,2})$$

圖 3 — 最小邊距和錨栓間距的內插法

對於特定邊距, 允許間距計算方式如下所示:

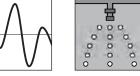

安裝說明

安裝使用說明 (IFU) 隨附每個產品包裝。因為可能隨時變更, 所以請務必確認下載的 IFU 在使用時為最新版本。為發揮完整效能, 請 務必正確安裝。可視需求提供培訓。如需了解 IFU 中未涉及的應用和條件, 請聯絡喜利得技術服務。

3.3.4 HST-3 膨脹錨栓

產品介紹

HST-3 膨脹錨栓


開裂混凝土

灌漿混凝土

磚石

抗震設計分類目錄 A-F

消防灑水器系統 認證

Profis Engineering 錨栓設計軟體

空心鑽頭和調整型 扭力模組(AT)

核准/列名認證	
歐洲技術評估	ETA-98/0001 / 2021.05.04
ICC-ES (國際規範委員會) • 2021 年國際建築法規 / 國際住宅法規 (IBC/IRC)	用於混凝土的 IAPMO UES ER-578 符合 ACI 318/土木 401 第 17 章/ACI 355.2/ICC-ES AC193 標準
洛杉磯市	2020 年 LABC 補充說明 (符合 ER-578 和 ESR-4561 標準)
佛羅里達州建築法規	2020 年 HVHZ 的 FBC 補充說明 (符合 ER-578 和 ESR-4561 標準)
FM (美國工廠互保研究中心) — 僅限碳鋼 HST-3	用於自動灑水器系統的管道吊架組件 3/8 (最大可達 4 英吋標準管道直徑) 1/21 (最大可達 8 英吋標準管道直徑) 3/4 (最大可達 12 英吋標準管道直徑)
UL 和 cUL (保險商試驗所) — 僅限碳鋼 HST-3	消防服務的管道吊架設備 3/8 3/8 (最大可達 4 英时標準管道直徑) 1/21 (最大可達 8 英时標準管道直徑) 3/4 (最大可達 12 英时標準管道直徑)

管道吊架

材料規範

電鍍鋅鎳層的碳鋼

- 碳鋼錨栓零件的電鍍根據 ASTM F1941,最小厚度為 5 μm。
- 螺帽符合 ASTM A563 A 級六角螺母的要求。
- 墊片符合 ASTM F844 的要求。
- 膨脹片(楔形)由碳鋼製成。
- 螺帽和螺栓表面經過專利塗層處理。 只有喜利得 HST-3 螺帽可搭配 HST-3 螺栓使用。
- 螺栓由碳鋼製成。

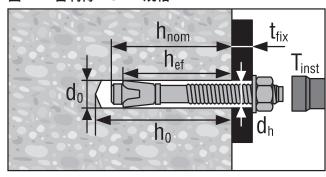
不銹鋼

- 316 型錨栓的所有螺帽和墊片均由 316 型不銹鋼製成。
- 螺帽符合 ASTM F594 的尺寸要求。
- 墊片符合 ANSI B18.22.1 類型 A 平墊片的尺寸要求。
- 膨脹片(楔形)由不鏽鋼製成。
- 螺帽和螺栓表面經過專利塗層處理。只有喜利得 HST-3 螺帽可搭配 HST-3 螺栓使用。

安裝參數

表 1 — 混凝土和灌漿混凝土磚石單元 (CMU) 安裝中的喜利得 HST-3 安裝資訊¹

以 · · · · · · · · · · · · · · · · · · ·												
安裝資訊	符號	單位			標稱錨	栓直徑						
女装貝訊	1寸5%	単位	M8	M10	M12	M16	M20	M24				
標準鑽頭直徑	d _o	mm	8	10	12	16	20	24				
有效最小埋深	h _{ef} , min	mm	47	47	70	85	101	-				
標稱最小埋深	h _{nom} , min	mm	54	68	80	98	116	125				
混凝土最小孔深	h ₁ , min	mm	59	73	88	106	124	151				
被固定物孔直徑	d _f	mm	9	12	14	18	22	26				
最大被固定物厚度	t _{fix} , max	mm	195	220	270	370	310	330				
安裝扭矩	T _{inst}	Nm	20	45	60	110	180	300				


喜利得 HST-3 斷裂荷載 (kgf)1

標稱錨栓直徑	碳鋼	不鏽鋼
M8	2920	2920
M10	6490	6180
M12	11240	11870
M16	17535	18835
M20	25335	$f_{uta} \ge 105, f_y \ge 84^2$
M24	$f_{uta} \ge 88, f_y \ge 75^2$	$f_{uta} \ge 99.9, f_y \ge 65^2$

¹ 螺栓斷裂荷載由採用通用拉力機進行的測試確定,以便在製造設施進行品質控管。這些荷載不用於設計用途。

^{1 1/2} 英吋直徑和 1-1/2 英吋的有效埋深沒有 FM 或 UL 認證。

圖 1 - 喜利得 HST-3 規格

用於混凝土的設計資料符合 ACI 318/土木 401 標準

ACI 318/土木 401 第 17 章設計

本節所包含的荷載值為喜利得簡化設計表。本節荷載表係使用強度設計參數和 ESR-578 變量, 以及 ACI 318/土木 401 第 401 章 內的公式制定而成。如需喜利得簡化設計表的詳細解釋, 請參閱第 3.1.8 節。ESR-578 資料表不包含在本節, 但可在以下網址參 閱: www.icc-es.org 或 www.hilti.com.tw。

表 2 — 喜利得碳鋼 HST-3 設計強度以符合 ACI 318/土木 401 第 17 章標準的非開裂混凝土中的混凝土破壞模式為基礎,適用於鎚鑽和空心鑽安裝 1,2,3,4

			拉力	」(混凝土破裂/抗	发出的較小值)- (ΦN _n	剪力	力 (混凝土破裂/ <u></u>	发出的較小值) -	ΦV _n
標稱錨栓直徑	有效埋深 (mm)	標稱埋深 (mm)	f' _c = 175 kgf/ cm ² kgf (kN)	f' = 210 kgf/cm² kgf (kN)	f'c = 280 kgf/cm² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/ cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f'c = 280 kgf/cm² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)
M8	38	44	429 (4.2)	445 (4.4)	472 (4.6)	510 (5.0)	701 (6.9)	767 (7.5)	885 (8.7)	1,084 (10.6)
	38	48	651 (6.4)	712 (7.0)	823 (8.1)	1,007 (9.9)	701 (6.9)	767 (7.5)	885 (8.7)	1,084
M10	51	64	1,000 (9.8)	1,095 (10.7)	1,266 (12.4)	1,551 (15.2)	1,077 (10.6)	1,182 (11.6)	1,363 (13.4)	1,669 (16.4)
	64	76	1,232 (12.1)	1,313 (12.9)	1,454 (14.3)	1,674 (16.4)	3,012 (29.5)	3,300 (32.4)	3,810 (37.4)	4,667 (45.8)
	38	51	730 (7.2)	801 (7.9)	925 (9.1)	1,132 (11.1)	787 (7.7)	862 (8.5)	996 (9.8)	1,220 (12.0)
	51	64	1,125 (11.0)	1,234 (12.1)	1,424 (14.0)	1,744 (17.1)	1,213 (11.9)	1,329 (13.0)	1,533 (15.0)	1,878 (18.4)
M12	64	76	1,399 (13.7)	1,531 (15.0)	1,769 (17.3)	2,166 (21.2)	3,012 (29.5)	3,300 (32.4)	3,810 (37.4)	4,667 (45.8)
	83	95	2,073 (20.3)	2,270 (22.3)	2,622 (25.7)	3,211 (31.5)	4,466 (43.8)	4,892 (48.0)	5,647 (55.4)	6,917 (67.8)
	70	83	1,585 (15.5)	1,737 (17.0)	2,007 (19.7)	2,458 (24.1)	3,475 (34.1)	3,808 (37.3)	4,395 (43.1)	5,384 (52.8)
M16	83	95	2,073 (20.3)	2,270 (22.3)	2,622 (25.7)	3,211 (31.5)	4,466 (43.8)	4,892 (48.0)	5,647 (55.4)	6,917 (67.8)
	102	114	2,651 (26.0)	2,905 (28.5)	3,354 (32.9)	4,110 (40.3)	6,096 (59.8)	6,679 (65.5)	7,711 (75.6)	9,444 (92.6)
	83	102	2,331 (22.9)	2,554 (25.0)	2,951 (28.9)	3,613 (35.4)	5,024 (49.3)	5,502 (54.0)	6,353 (62.3)	7,781 (76.3)
M20	95	114	2,889 (28.3)	3,166 (31.0)	3,656 (35.9)	4,477 (43.9)	6,226 (61.1)	6,820 (66.9)	7,874 (77.2)	9,646 (94.6)
	121	140	3,663 (35.9)	4,012 (39.3)	4,633 (45.4)	5,674 (55.6)	7,888 (77.4)	8,641 (84.7)	9,979 (97.9)	12,222 (119.9)
	102	117	3,184 (31.2)	3,488 (34.2)	4,028 (39.5)	4,933 (48.4)	6,858 (67.3)	7,514 (73.7)	8,675 (85.1)	10,625 (104.2)
M24	146	162	4,878 (47.8)	5,343 (52.4)	6,171 (60.5)	7,557 (74.1)	10,507 (103.0)	11,510 (112.9)	13,290 (130.3)	16,277 (159.6)

¹ 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。

表 3 — 喜利得碳鋼 HST-3 設計強度以符合 ACI 318/土木 401 第 17 章標準的開裂混凝土中的混凝土破壞模式為基礎, 適用於鎚鑽和空心鑽安裝 1,2,3,4,5

			拉力	」(混凝土破裂/捷	发出的較小值) -	ΦN _n	剪力	」(混凝土破裂/技	发出的較小值) -	ΦV _n
標稱錨栓 直徑	有效埋深 (mm)	標稱埋深 (mm)	f' _c = 175 kgf/ cm ² kgf (kN)	f' = 210 kgf/cm² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	f' _c = 175 kgf/ cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' = 280 kgf/cm² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)
M8	38	44	127	136	154	179	497	542	628	769
IVIO	30	44	(1.2)	(1.3)	(1.5)	(1.8)	(4.9)	(5.3)	(6.2)	(7.5)
	38	48	569	624	719	880	612	671	776	948
	30	40	(5.6)	(6.1)	(7.1)	(8.6)	(6.0)	(6.6)	(7.6)	(9.3)
M10	E-1	64	875	959	1,107	1,356	943	1,032	1,193	1,461
IVI IU	51	04	(8.6)	(9.4)	(10.9)	(13.3)	(9.3)	(10.1)	(11.7)	(14.3)
	64	76	991	1,084	1,254	1,535	2,134	2,338	2,699	3,304
	04	76	(9.7)	(10.6)	(12.3)	(15.1)	(20.9)	(22.9)	(26.5)	(32.4)
	38	51	651	712	823	1,007	701	767	885	1,084
	30	51	(6.4)	(7.0)	(8.1)	(9.9)	(6.9)	(7.5)	(8.7)	(10.6)
	E-1	6.4	875	959	1,107	1,356	943	1,032	1,193	1,461
M12 51	64	(8.6)	(9.4)	(10.9)	(13.3)	(9.3)	(10.1)	(11.7)	(14.3)	
	0.4	70	1,225	1,340	1,549	1,896	2,635	2,887	3,334	4,082
	64	76	(12.0)	(13.1)	(15.2)	(18.6)	(25.8)	(28.3)	(32.7)	(40.0)
	00	0.5	1,467	1,608	1,857	2,275	3,162	3,465	4,001	4,899
	83	95	(14.4)	(15.8)	(18.2)	(22.3)	(31.0)	(34.0)	(39.2)	(48.0)
	70	00	1,411	1,547	1,785	2,186	3,041	3,332	3,846	4,711
	70	83	(13.8)	(15.2)	(17.5)	(21.4)	(29.8)	(32.7)	(37.7)	(46.2)
MAC	00	0.5	1,814	1,987	2,295	2,810	3,908	4,280	4,942	6,053
M16	83	95	(17.8)	(19.5)	(22.5)	(27.6)	(38.3)	(42.0)	(48.5)	(59.4)
	100	444	2,005	2,195	2,536	3,105	4,318	4,731	5,461	6,690
	102	114	(19.7)	(21.5)	(24.9)	(30.4)	(42.3)	(46.4)	(53.6)	(65.6)
	83	102	1,814	1,987	2,295	2,810	3,908	4,280	4,942	6,053
	03	102	(17.8)	(19.5)	(22.5)	(27.6)	(38.3)	(42.0)	(48.5)	(59.4)
M20	05	114	2,248	2,463	2,844	3,484	4,842	5,305	6,126	7,502
IVI2U	95	114	(22.0)	(24.2)	(27.9)	(34.2)	(47.5)	(52.0)	(60.1)	(73.6)
	404	440	2,606	2,746	2,985	3,359	6,904	7,561	8,732	10,693
	121	140	(25.6)	(26.9)	(29.3)	(32.9)	(67.7)	(74.2)	(85.6)	(104.9)
	100	447	2,477	2,712	3,132	3,837	5,334	5,842	6,747	8,264
N404	102	117	(24.3)	(26.6)	(30.7)	(37.6)	(52.3)	(57.3)	(66.2)	(81.0)
M24	146	160	3,481	3,815	4,404	5,393	9,194	10,072	11,630	14,243
	146	162	(34.1)	(37.4)	(43.2)	(52.9)	(90.2)	(98.8)	(114.1)	(139.7)

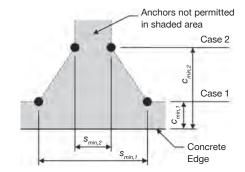
108

錨栓緊固技術指引

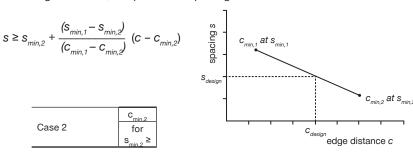
² 不允許埋置深度和混凝土抗壓強度之間的線性內插法。

³ 視需要應用表 6 至素 15 的問距,邊距及混凝土厚度係數。與表 4 中的鋼材數值進行比較。較小的值會用於設計。 4 表列值僅限於額定重量混凝土。對於輕質混凝土,將設計強度如下所示乘以λ。:對於輕質砂混凝土,λ。= 0.68;對於全輕質混凝土,λ。= 0.60。 5 對於採用空心鑽鑽孔,按 95mm 有效埋深安裝的 M20 錨栓,應對拉力設計強度採用 0.89 的折減係數。

減。有關地震應用的其他資訊,請參閱第 3.1.8 節。


表 4 — 喜利得碳鋼 HST-3 設計強度以符合 ACI 318/土木 401 第 17 章標準的鋼材破壞為基礎 1,2

標稱錨栓直徑		有效埋	深 (mm)	拉力 ³	剪力 ⁴ ΦV _{sa} kgf (kN)	抗震剪力 ⁵
M8		(38	993	397	397
				(9.7)	(3.9)	(3.9)
M10		,	38	2,209	950	950
IVIIO		`		(21.7)	(9.3)	(9.3)
M10	10 51		64	2,209	998	998
IVITO			04	(21.7)	(9.8)	(9.8)
M12		38	51	3,824	1,633	1,633
IVIIZ		00	31	(37.5)	(16.0)	(16.0)
MAO	,	64	83	3,824	2,028	2,028
M12	,	04	03	(37.5)	(19.9)	(19.9)
				5,965	3,023	3,023
M16	70	83	102	(58.5)	(29.6)	(29.6)
1400	83	0.5	404	8,618	4,071	4,071
M20	83	33 95 121		(84.5)	(39.9)	(39.9)
M24			00	14,073	5,541	4,071
(25.4)		1	02	(138.0)	(54.3)	(39.9)
M24		_	40	14,073	6,747	4,071
(25.4)		1	46	(138.0)	(66.2)	(39.9)


- 1 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。 2 喜利得 HSL3 碳鋼錨栓被視為韌性鋼鐵元件。

- 2 喜刊停 FISL3 峽銅細柱 依保為朝性銅塊兀什。
 3 張力 = 向N_{ss} = 向 A _{sex}, f_{tus}, 如 ACI 318/ CIVIL 401 第 17 章所述。
 4 剪力值由使用 φV_{ss} < φ 0.60 A_{sex}, f_{tus} 的神態剪力測試判定,如 ACI 318/ CIVIL 401 第 17 章所述。
 5 地震剪力值由使用 φV_{ss} ≤ φ 0.60 A_{sex}, f_{tus} 的地震剪力測試判定,如 ACI 318/ CIVIL 401 第 17 章所述。
 有關地震應用的其他資訊,請參閱第 3.1.8 節。

圖 2

For a specific edge distance, the permitted spacing is calculated as follows:

表 5 - 喜利得碳鋼 HST-3 安裝參數 1

安裝資訊	符號	党 單位 -								標稱鉗	栓直徑							
女装貝訊	1寸5版		M8		M10			М	12			M16			M20		N	124
有效埋深	h _{ef}	mm	38	38	51	64	38	51	64	83	70	83	102	83	95	121	102	146
最小混凝土厚度	h _{min}	mm	83	83	102	127	89	102	127	140	127	140	152	140	152	203	203	254
安/周4	C _{min,1}	mm	38	127	64	64	203	70	70	57	114	89	70	127	102	89	203	76
案例1	for s _{min,1} ≥	mm	38	203	152	127	305	140	248	133	165	140	184	254	146	140	203	171
案例2	C _{min,2}	mm	38	203	89	102	203	254	203	121	140	178	108	152	184	121	203	95
来げ」と 	for s _{min,2} ≥	mm	38	127	57	51	305	89	76	51	114	70	57	114	95	95	203	121

¹ 案例 1 和案例 2 之間允許使用線性內插法建立邊距和間距組合。特定邊距 c 的線性內插法,其中 $c_{\min,1} < c < c_{\min,2}$,會判定允許間距。

表 6 — 喜利得不銹鋼 HST-3 設計強度以符合 ACI 318/土木 401 第 17 章標準的非開裂混凝土中的混凝土破壞模式 為基礎, 適用於鎚鑽和空心鑽安裝 1,2,3,4

			拉力	拉力 (混凝土破裂/拔出的較小值) - ΦN _n				剪力 (混凝土破裂/拔出的較小值) - ΦV _n				
標稱錨栓 直徑	有效埋深 (mm)	標稱埋深 (mm)	f' _c = 175 kgf/ cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	$f'_{c} = 175 \text{ kgf/}$ cm^{2} $kgf (kN)$	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)		
M8	38	44	320 (3.1)	345 (3.4)	386 (3.8)	451 (4.4)	701 (6.9)	767 (7.5)	885 (8.7)	1,084 (10.6)		
	38	48	651 (6.4)	712 (7.0)	823 (8.1)	1,007 (9.9)	701 (6.9)	767 (7.5)	885 (8.7)	1,084 (10.6)		
M10	51	64	1,000	1,095	1,266 (12.4)	1,551 (15.2)	1,077 (10.6)	1,182	1,363 (13.4)	1,669 (16.4)		
	64	76	1,234 (12.1)	1,320 (12.9)	1,467 (14.4)	1,706 (16.7)	3,012 (29.5)	3,300 (32.4)	3,810 (37.4)	4,667 (45.8)		
	51	64	996 (9.8)	1,084	1,236 (12.1)	1,490 (14.6)	1,077 (10.6)	1,182 (11.6)	1,363 (13.4)	1,669 (16.4)		
M12	64	76	1,182 (11.6)	1,295 (12.7)	1,495 (14.7)	1,833 (18.0)	3,012 (29.5)	3,300 (32.4)	3,810 (37.4)	4,667 (45.8)		
	83	95	1,622 (15.9)	1,776 (17.4)	2,050 (20.1)	2,513 (24.6)	4,466 (43.8)	4,892 (48.0)	5,647 (55.4)	6,917 (67.8)		
	70	83	1,204	1,320	1,524 (14.9)	1,867 (18.3)	3,475 (34.1)	3,808 (37.3)	4,395 (43.1)	5,384 (52.8)		
M16	83	95	1,774 (17.4)	1,914 (18.8)	2,161 (21.2)	2,561 (25.1)	4,466 (43.8)	4,892 (48.0)	5,647 (55.4)	6,917 (67.8)		
	102	114	2,375 (23.3)	2,585 (25.4)	2,960 (29.0)	3,581 (35.1)	6,096 (59.8)	6,679 (65.5)	7,711 (75.6)	9,444 (92.6)		
	83	102	2,073 (20.3)	2,270 (22.3)	2,622 (25.7)	3,211 (31.5)	4,466 (43.8)	4,892 (48.0)	5,647 (55.4)	6,917 (67.8)		
M20	95	114	2,889 (28.3)	3,166 (31.0)	3,656 (35.9)	4,477 (43.9)	6,226 (61.1)	6,820 (66.9)	7,874 (77.2)	9,646 (94.6)		
	121	140	3,663 (35.9)	4,012 (39.3)	4,633 (45.4)	5,674 (55.6)	7,888 (77.4)	8,641 (84.7)	9,979 (97.9)	12,222 (119.9)		
1404	102	117	3,184 (31.2)	3,488 (34.2)	4,028 (39.5)	4,933 (48.4)	6,858 (67.3)	7,514 (73.7)	8,675 (85.1)	10,625 (104.2)		
M24	146	162	5,488 (53.8)	6,012 (59.0)	6,942 (68.1)	8,503 (83.4)	11,821 (115.9)	12,948 (127.0)	14,953 (146.6)	18,312 (179.6)		

表 7 — 喜利得不銹鋼 HST-3 設計強度以符合 ACI 318/土木 401 第 17 章標準的非開裂混凝土中的混凝土破壞模式為基礎, 適用於鎚鑽和空心鑽安裝 1,2,3,4,5

			拉力	」(混凝土破裂/抗		ΦN _n	剪力 (混凝土破裂/拔出的較小值) - ΦV _n				
標稱錨栓 直徑	有效埋深 (mm)	標稱埋深 (mm)	f' _c = 175 kgf/ cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	$f'_{c} = 175 \text{ kgf/}$ cm^{2} $kgf (kN)$	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 420 kgf/cm ² kgf (kN)	
M8	38	44	136 (1.3)	150 (1.5)	172 (1.7)	211 (2.1)	497 (4.9)	542 (5.3)	628 (6.2)	769 (7.5)	
	38	48	569 (5.6)	624 (6.1)	719 (7.1)	880 (8.6)	612 (6.0)	671 (6.6)	776 (7.6)	948 (9.3)	
M10	51	64	875 (8.6)	959 (9.4)	1,107 (10.9)	1,356 (13.3)	943 (9.3)	1,032 (10.1)	1,193 (11.7)	1,461 (14.3)	
	64	76	991 (9.7)	1,084 (10.6)	1,254 (12.3)	1,535 (15.1)	2,134 (20.9)	2,338 (22.9)	2,699 (26.5)	3,304 (32.4)	
	51	64	710 (7.0)	776 (7.6)	896 (8.8)	1,098 (10.8)	764 (7.5)	837 (8.2)	966 (9.5)	1,182 (11.6)	
M12	64	76	1,225 (12.0)	1,340 (13.1)	1,549 (15.2)	1,896 (18.6)	2,635 (25.8)	2,887 (28.3)	3,334 (32.7)	4,082 (40.0)	
	83	95	1,467 (14.4)	1,608 (15.8)	1,857 (18.2)	2,275 (22.3)	3,162 (31.0)	3,465 (34.0)	4,001 (39.2)	4,899 (48.0)	
	70	83	1,411 (13.8)	1,547 (15.2)	1,785 (17.5)	2,186 (21.4)	3,041 (29.8)	3,332 (32.7)	3,846 (37.7)	4,711 (46.2)	
M16	83	95	1,814 (17.8)	1,987 (19.5)	2,295 (22.5)	2,810 (27.6)	3,908 (38.3)	4,280 (42.0)	4,942 (48.5)	6,053 (59.4)	
	102	114	2,005 (19.7)	2,195 (21.5)	2,536 (24.9)	3,105 (30.4)	4,318 (42.3)	4,731 (46.4)	5,461 (53.6)	6,690 (65.6)	
	83	102	1,814 (17.8)	1,987 (19.5)	2,295 (22.5)	2,810 (27.6)	3,908 (38.3)	4,280 (42.0)	4,942 (48.5)	6,053 (59.4)	
M20	95	114	2,248 (22.0)	2,463 (24.2)	2,844 (27.9)	3,484 (34.2)	4,842 (47.5)	5,305 (52.0)	6,126 (60.1)	7,502 (73.6)	
	121	140	2,592 (25.4)	2,839 (27.8)	3,279 (32.2)	4,017 (39.4)	6,904 (67.7)	7,561 (74.2)	8,732 (85.6)	10,693 (104.9)	
M24	102	117	2,830 (27.8)	3,100 (30.4)	3,581 (35.1)	4,384 (43.0)	6,096 (59.8)	6,679 (65.5)	7,711 (75.6)	9,444 (92.6)	
10124	146	162	4,268 (41.9)	4,677 (45.9)	5,400 (53.0)	6,613 (64.9)	9,194 (90.2)	10,072 (98.8)	11,630 (114.1)	14,243 (139.7)	

- 1 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。
- 2 不允許埋置深度和混凝土抗壓強度之間的線性內插法。
- 2 インル計学量は不良中化族生力化能效性之间的場所に打調性。 3 視需要應用表 22 至表 33 的間距、邊距及混凝土更度係數。與表 20 中的鋼材數值進行比較。較小的值會用於設計。 4 表列值僅限於額定重量混凝土。對於輕質混凝土,將設計強度如下所示乘以 λ :對於輕質砂混凝土,λ 。= 0.68;對於全輕質混凝土,λ 。= 0.60。 5 表列值僅限靜態荷載。非開裂混凝土不允許進行抗震設計。對於地震拉力荷載,只將拉力的開裂混凝土表列值乘以 α_{Ν,seis} = 0.75. 抗震剪力不需要折減,除了 M10 螺栓,其中 α_{ν,seis} = 0.81.

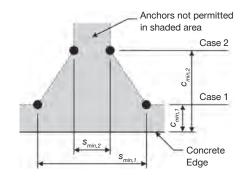
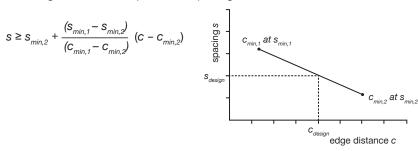

- 5 表列值匯稅貯悉拘載。 中開裝施模上不允計進11九歲故前。 對於地震拉力拘載,只將拉力的開裝施模上 有關地震應用的其他資訊,請參閱第 3.1.8 節。 6 對於採用空心鑽鑽孔,按 95mm 有效埋深安裝的 M10 錨栓,應對拉力設計強度採用 0.89 的折減係數。 7 對於採用空心鑽鑽孔,按 95mm 有效埋深安裝的 M10 錨栓,應對拉力設計強度採用 0.81 的折減係數。 8 對於採用空心鑽鑽孔,按 83mm 有效埋深安裝的 M12 錨栓,應對拉力設計強度採用 0.85 的折減係數

表 8 - 喜利得不銹鋼 HST-3 設計強度以符合 ACI 318/土木 401 第 17 章標準的鋼材破壞為基礎 1,2


標準錨栓直徑		有效埋泡	菜 (mm)	拉力 ³	剪力 ⁴ ΦV _{sa} kgf (kN)	抗震剪力 ⁵ ΦV _{sa} kgf (kN)
M8		3	8	993	431	327
				(9.7)	(4.2)	(3.2)
M10		3	Ω	2,102	1,361	1,361
IVITO		3	0	(20.6)	(13.3)	(13.3)
M10		51	64	2,102	1,440	1,440
IVITO		01	04	(20.6)	(14.1)	(14.1)
M12	51	64	83	4,039	2,461	2,461
IVI IZ	51	64	03	(39.6)	(24.1)	(24.1)
M16	70	83	102	6,407	3,642	3,642
IVITO	70	03	102	(62.8)	(35.7)	(35.7)
M20	83	95	121	8,181	4,883	3,971
IVIZU	03	95	121	(80.2)	(47.9)	(38.9)
M24		1(10	15,973	6,768	3,971
(25.4)		10	14	(156.6)	(66.4)	(38.9)
M24		14		15,973	9,258	3,971
(25.4)				(156.6)	(90.8)	(38.9)

- 1 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。 2 喜利得 HST-3 不鏽鋼錨栓被視為韌性鋼鐵元件。

Figure 3

For a specific edge distance, the permitted spacing is calculated as follows:

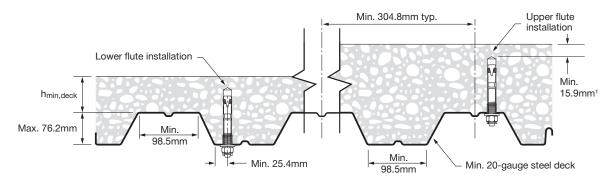
表 9 - 喜利得不鏽鋼 HST-3 安裝參數1

内针次訊	<i>የተ</i> በ-	單位							標	稱錨栓直	ī徑						
安裝資訊	符號	単江	M8		M10			M12			M16			M20		М	24
有效埋深	h _{ef}	mm	38	38	51	64	51	64	83	70	83	102	83	95	121	102	146
最小混凝土厚度	h _{min}	mm	83	83	102	127	102	127	140	127	140	152	140	152	203	203	254
案例1	C _{min,1}	mm	38	127	64	64	70	64	57	102	83	57	127	102	95	95	76
采[7] I	for s _{min,1} ≥	mm	38	203	127	127	140	114	133	178	140	178	279	191	146	254	171
案例2	C _{min,1}	mm	38	203	102	89	105	114	114	140	102	108	203	152	133	108	95
来げ」と	for s _{min,1} ≥	mm	38	127	57	57	70	64	51	140	70	76	127	102	102	127	121

¹ 例 1 和案例 2 之間允許使用線性內插法建立邊距和間距組合。特定邊距 c 的線性內插法,其中 $c_{min.1} < c < c_{min.2}$,會判定允許的間距。

表 10 — 金屬平台鋼承板上輕質非開裂混凝土拱腹中的喜利得碳鋼 HST-3, 適用於鎚鑽和空心鑽安裝 1,2,3,4,5,6

				根據圖△	4 的安裝			根據圖:	5 的安裝	
			最小	拉力	- ФN _n	剪力 - ΦV _n	最小	拉力	- ФN _n	剪力 - ΦV _n
標稱錨栓	有效埋深	標稱埋深	混凝土厚度 ⁸	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	混凝土厚度8	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)
直徑	(mm)	(mm)	mm		• , ,	• , ,	mm	• ,	• , ,	• , ,
M8	38	44	64	352 (3.4)	372 (3.6)	481 (4.7)	(57.0)	281 (2.8)	297 (2.9)	331 (3.2)
	38	48	64	547	583	399	(57.0)	293	311	699
-				(5.4)	(5.7)	(3.9)		(2.9)	(3.0)	(6.9)
M10	51	64	64	773 (7.6)	830 (8.1)	626 (6.1)	(57.0)	733 (7.2)	785 (7.7)	739 (7.3)
-	64	76	64	882 (8.7)	977 (9.6)	626 (6.1)	不適用	不適用	不適用	不適用
	38	51	64	547 (5.4)	630 (6.2)	528 (5.2)	(57.0)	619 (6.1)	789 (7.7)	1,740 (7.7)
	51	64	64	812 (8.0)	914 (9.0)	667 (6.5)	(57.0)	633 (6.2)	937 (9.2)	2,065 (9.2)
M12	64	76	64	1,104 (10.8)	1,200 (11.8)	968 (9.5)	不適用	不適用	不適用	不適用
	83	95	64	1,390 (13.6)	1,538 (15.1)	1,250 (12.3)	(83.0)	869 (8.5)	1,021 (10.0)	2,250 (10.0)
1440	70	83	64	1,302 (12.8)	1,504 (14.7)	1,125 (11.0)	(83.0)	1,009 (9.9)	1,204 (11.8)	2,655 (11.8)
M16	102	114	64	1,715 (16.8)	1,980 (19.4)	1,372 (13.5)	不適用	不適用	不適用	不適用
MOO	83	102	64	1,120 (11.0)	1,238 (12.1)	1,204 (11.8)	不適用	不適用	不適用	不適用
M20	95	114	83	1,413 (13.9)	1,544 (15.1)	2,318 (22.7)	不適用	不適用	不適用	不適用


表 11 — 金屬平台鋼承板上輕質非開裂混凝土拱腹中的喜利得碳鋼 HST-3, 適用於鎚鑽和空心鑽安裝 1,2,3,4,5,6,7

				根據圖△	的安裝			根據圖:	5 的安裝	
			最小	拉力	- ФN _n	剪力 - ΦV _n	最小	拉力	- ФN _n	剪力 - ΦV _n
標稱錨栓 直徑	有效埋深 (mm)	標稱埋深 (mm)	混凝土厚度® mm	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)	混凝土厚度。 mm	f' _c = 210 kgf/cm ² kgf (kN)	f' _c = 280 kgf/cm ² kgf (kN)	f' _c = 210 kgf/cm ² kgf (kN)
M8	38	44	64	104 (1.0)	118 (1.2)	481 (4.7)	(57.0)	84 (0.8)	93 (0.9)	331 (3.2)
	38	48	64	479 (4.7)	553 (5.4)	399 (3.9)	(57.0)	256 (2.5)	295 (2.9)	699 (6.9)
M10	51	64	64	676 (6.6)	1 (7.6)	626 (6.1)	(57.0)	628 (6.2)	717 (7.0)	739 (7.3)
	64	76	64	710 (7.0)	1 (7.5)	626 (6.1)	不適用	不適用	不適用	不適用
	38	51	64	488 (4.8)	1 (5.5)	528 (5.2)	(57.0)	435 (4.3)	499 (4.9)	789 (7.7)
M12	51	64	64	630 (6.2)	1 (7.1)	667 (6.5)	(57.0)	435 (4.3)	503 (4.9)	937 (9.2)
IVI IZ	64	76	64	966 (9.5)	1,104 (10.9)	968 (9.5)	不適用	不適用	不適用	不適用
	83	95	64	984 (9.7)	1,104 (10.8)	1,250 (12.3)	(83.0)	558 (5.5)	626 (6.1)	1,021 (10.0)
M16	70	83	64	1,159 (11.4)	1,338 (13.1)	1,125 (11.0)	(83.0)	778 (7.6)	898 (8.8)	1,204 (11.8)
IVITO	102	114	64	1,295 (12.7)	1,497 (14.7)	1,372 (13.5)	不適用	不適用	不適用	不適用
M20	83	102	64	980 (9.6)	1,086 (10.7)	1,204 (11.8)	不適用	不適用	不適用	不適用
IVIZU	95	114	83	1,100 (10.8)	1,241 (12.2)	2,318 (22.7)	不適用	不適用	不適用	不適用

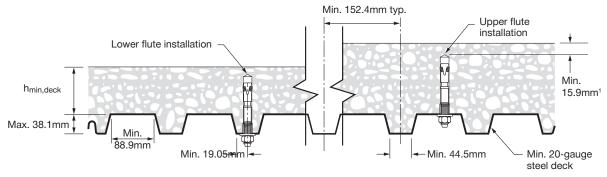

- 1 請參閱第 3.1.8 節將設計強度值轉換為 ASD 值。 2 不允許埋置深度和混凝土抗壓強度之間的線性內插法。
- 3 表格值適用於每槽一個錨栓。 沿凹槽長度的最小間距為 3 x h_{ef} (有效埋深)。 4 表列值為輕質混凝土,且不需要其他折減係數。
- 5 不需要套用間距或邊距的其他折減係數。 6 不需要比較鋼材強度與表列值。表列值控制。
- 7 未格值性適用於靜態負載。 未開裂的混凝土不允許進行抗震設計。 對於地震拉力荷載,僅將開裂混凝土的拉力表值乘以 $\alpha_{N,seis}$ = 0.75, 除了M10 x 121mm h_{ef} 其中 $\alpha_{N,seis}$ = 0.73。有關地震應用的更多訊息,請參閱第 3.1.8 節。
- 日間の日本版版に用することでは、明まりは外のことは、 8 Minimum concrete thickness over the upper flute when anchor is installed in the lower flute. See Figure 4 and 5。 9 對於採用空心鑽打孔鑽孔,按 95mm 有效埋深安裝在非開裂混凝土中的的 3/4" 錨栓,應對拉力設計強度採用 0.89 的折減係數。

圖 4 - 在鋼承板或屋頂組件上的混凝土中安裝喜利得碳鋼²

圖 5 — 在鋼承板或屋頂組件上的混凝土中安裝喜利得碳鋼 HST-3 – B 平台

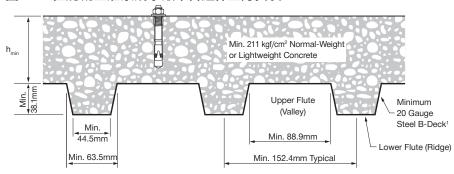

- 鑽孔底部和混凝土表面之間的 15.9mm 間隙僅適用於上方凹槽安裝。如需下方凹槽安裝的最小混凝土厚度,請參閱表 34 和表 35。
- 2 對於大於或等於 114mm 的凹槽寬度, 剪力強度可能會增加。如需更多資訊, 請參閱 ER-578。

表 12 — 根據圖 6 在混凝土灌漿鋼承鈑平台組件上方安裝喜利得 HST-3 碳鋼錨栓的安裝資訊 1,2,3

設計資訊	符號	單位		標稱錨栓	直徑 (mm)	
成前 其前	1 তা চার্ম	1	M8	М	10	M12
有效最小埋深	h _{ef}	mm	38	38	51	51
標稱最小埋深	h _{nom}	mm	44	48	64	64
最小孔深	h _o	mm	51	51	64	70
最小混凝土厚度4	h _{min,deck}	mm	64	64	64	89
臨界邊距	C _{ac,deck,top}	mm	127	203	114	152
最小邊距	C _{min,deck,top}	mm	76	40	06	190
	S _{min,deck,top}	mm	76	20	03	229
必要的安裝扭矩	T _{inst}	ft-lb	4	3	30	

- 安裝必須符合此報告圖 6 的標準。
- 設計能力應基於按此報告中表 2 和表 3 所示數值進行的計算。
- 3 適用於 / m=cm < 4 英时適用 · 並使用此報告中表 1 和表 5 的安裝資訊 4 最小混凝土厚度指的是上方凹槽上的混凝土厚度。見圖 6

- 在混凝土灌漿鋼承鈑平台組件上方安裝 HST-3

1 最為最小外形尺寸的 38mm B 平台。同樣允許其他符合 B 平台最小尺寸的平台外形。

用於磚石的設計資訊

表 13 — 用於灌漿混凝土磚石單元 (CMU) 牆之喜利得 HST-3 碳鋼和不鏽鋼錨栓的容許拉力荷載 1,3,4,5,6

					間距			邊距	
標稱錨栓直徑	標稱埋深 mm		拉能力 印 c _{cr} (kN)	臨界間距, s _{cr} mm	最小間距², S _{min} mm	s _{min} 處的 荷載乘數	臨界邊距, c _{cr} mm	最小邊距, c _{min} mm	c _{min} 處的 荷載乘數
M8	44	66	(0.6)	152		0.62			0.87
M10	48	184	(1.8)	152	76	0.49			0.80
IVITO	76	268	(2.6)	254		0.58	305		0.93
M12	64	227	(2.2)	203	102	0.59			0.94
IVI IZ	95	290	(2.8)	330	102	0.78		102	1.00
M16	83	404	(4.0)	279	127	0.66			0.96
IVITO	114	426	(4.2)	406	127	0.61	508		0.96
M20	102	565	(5.5)	330	152	0.49	506		0.75
10120	140	628	(6.2)	483	132	0.45			0.82

錨栓緊固技術指引

表 14 — 用於灌漿混凝土磚石單元 (CMU) 牆之喜利得 HST-3 碳鋼和不鏽鋼錨栓的容許剪力荷載 1,3,4,5,6

					間距			邊	距	
標稱錨栓直徑	標稱埋深 mm		c _{cr} 處的 剪能力 (kN)	臨界間距, S _{cr} mm	最小間距², s _{min} mm	S _{min} 處的 荷載乘數	臨界邊距, C _c , mm	最小邊距, c _{min} mm	c _{min} 處的 垂直荷載 折減係數	c _{min} 處的 平行荷載 折減係數
M8	44	145	(1.4)	152					1.00	1.00
M10	48	265	(2.6)	152	76				0.76	0.99
IVITO	76	315	(3.1)	254			305		0.76	0.99
M12	64	474	(4.7)	203	102				0.50	0.83
IVIIZ	95	4/4	(4.7)	330	102	0.73		102	0.50	0.63
M16	83	787	(7.7)	279	127]			0.36	0.75
IVITO	114	930	(9.1)	406	127		508		0.35	0.85
M20	102	787	(7.7)	330	152		308		0.36	0.75
IVIZU	140	,	(9.1)	483	152				0.35	0.85

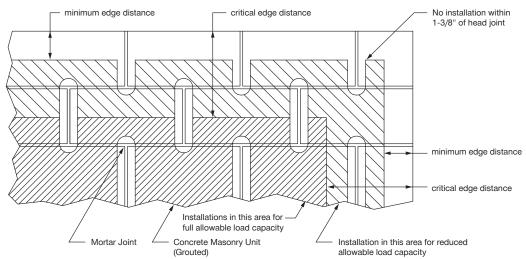
¹ 數值適用於安裝在符合 ASTM C90 標準的類型 1、等級 N、輕質、中等重量或標準重量混凝土磚石單元面殼上的錨栓磚石單元必須使用符合 2018 年和 2015 年 IBC 第 2103.3 節、2012 年 IBC 第 2103.13 節,或是 2009 年 IBC 第 2103.12 節標準的粗漿充分灌漿。砂漿必須符合 2018 年和 2015 年 IBC 第 2103.2.1 節、2012 年 IBC 第 2103.9 節,或是 2009 年 IBC 第 2103.8 節標準。磚石抗壓強度在錨栓安裝時至少必須達到 1,500 psi。

列表中的荷載適用於臨界間距為有效埋深 4 倍的錨栓。錨栓必須按最小間距 Smin 設置,但前提是對表列值進行折減。

1 根據圖 6,錨栓的安裝位置與任何垂直砂漿接台處的距離至少為 35mm。

2 必須從混凝土磚石單元外側面測量嵌入深度。

- 必須使促展工時口車元77例回測量取八米度。 對於中間邊距和間距,可通過在7月表中邊距或間距處容許荷載之間進行線性內插計算來確定容許荷載。 列表的容許荷載已根據 5.0 的安全係數計算完畢。


表 15 — 安裝在灌漿混凝土磚石牆頂部之喜利得 HST-3 碳鋼和不鏽鋼錨栓的容許拉力和剪力荷載 1,3,4,5,6

		與牆壁邊緣的						容許抗	剪能力	
	標稱埋深	最小邊距, C _{min}	最小間距², s _{min}	最小邊距², C _{end}	容許抗	拉能力	容許抗	剪能力	與磚石牆	邊緣平行
標稱錨栓直徑	mm	mm	mm	mm	kgf	(kN)	kgf	(kN)	kgf	(kN)
M10	48		152	305	136	(1.3)	147	(1.4)	79	(0.8)
WITO	76	44	254	305	179	(1.8)	215	(2.1)	100	(1.0)
M12	64	44	203	305	174	(1.7)	227	(2.2)	88	(0.9)
IVI IZ	95		330	305	220	(2.2)	277	(2.7)	109	(1.1)
M16	83	83 70	279	305	281	(2.8)	422	(4.1)	186	(1.8)
	114	70	406	305	392	(3.8)	562	(5.5)	211	(2.1)

- 1 數值適用於安裝在符合 ASTM C90 標準的類型 1、等級 N、輕質、中等重量或標準重量混凝土磚石單元面殼上的錨栓磚石單元必須使用符合 2018 年和 2015 年 IBC 第 2103.3 節、2012 年 IBC 第 2103.1 節、或是 2009 年 IBC 第 2103.1 節、標準的知灌漿充分灌漿。砂漿必需符合2018 年和 2015 年 IBC 第 2103.2 1 節、2012 年 IBC 第 2103.9 節,或是 2009 年 IBC 第 2103.8 節標準。磚石抗壓強度在錨栓安裝時至少必須達到 1,500 psi。
 2 列列表中的荷載適用於臨界間距為有效埋深 4 倍的錨栓。錨栓必須按最小間距S_{min}設置,但前提是對表列值進行折減。
 3 根據图 6,錨栓的安裝位置與任何端部接合處的距離至少為 35mm。

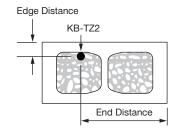

- 必須從混凝土轉石單元外側面測量嵌入深度。 對於中間邊距和間距,可通過在列表中邊距或間距處容許荷載之間進行線性內插計算來確定容許荷載。
- 6 列表的容許荷載已根據 5.0 的安全係數計算完畢。

圖 7 — 喜利得 HST-3 錨栓用於灌漿 CMU 牆時的可接受位置 (陰影區)

Anchor installation is restricted to shaded areas

圖 8 — 安裝在灌漿 CMU 牆頂部的喜利得 HST-3 錨栓的邊距和端距

116

安裝說明

安裝使用說明 (IFU) 隨附每個產品包裝。您也可以在線上檢視或下載,網址為 www.hilti.com.tw。因為可能隨時變更,所以請務必確 認下載的 IFU 在使用時為最新版本。為發揮完整效能,請務必正確安裝。可視需求提供培訓。如需了解 IFU 中未涉及的應用和條件, 請聯絡喜利得技術服務。

3.3.5 HUS4 自攻錨栓

用於單點緊固的終極效能自攻錨栓

錨栓系統 功能和優勢 高生產力 - 與傳統錨栓相比,鑽孔和作業量更少 開裂和非開裂混凝土的 ETA 核准 HUS4-H(F) 地震 C1 和 C2 的 ETA 核准 ETA 認證的可調整性 (轉鬆 - 重新鎖緊) 較小的邊距和間距 新澆築混凝土可重複使用的 aBG (DIBt) 認證 (f_{ck, cube} = 10/15/20/25 Nmm²), 進行臨時應用 三種埋深,可最大限度地提高設計靈活性及混凝土承 受力的靈活設計 HUS4-C 尺寸 8 至 14 不需要清孔 具有多塗層的 HUS4-HF 和 HUS4-AF, 可提供額外的 防腐蝕保護 使用 H、A 及 C 頭的穿透式固定 使用 A 頭的預緊固 HUS4-A(F) (10-14)

基材

開裂混凝土

空心樓板

實心磚

荷載條件

蒸壓氣泡混凝土

PROFIS Engineering 設計軟體

ETA-C1/C2

防火性

Installation conditions

邊緣距離和 間距小

Other information

歐洲技術評估

歐洲合格認證

PROFIS

錨栓設計軟體

Engineering

DIBt 核准可重 用性

核准/제夕钡鬶

1久/庄/フリヤロ心位		
介紹	機構	簽發編號/日期
歐洲技術評估	DIBt	ETA-20/0867 / 14-04-2022
防火測試報告	DIBt	ETA-20/0867 / 14-04-2022
針對臨時緊固的 aBG	DIBt	Z-21.8-2137 / 21-12-2021

*HUS4-HF 不提供尺寸 12

靜態和準靜態荷載 (單個錨栓)

本節中的所有數據適用於:

- 正確安裝(請參閱安裝說明)
- 無邊距和間距影響

- 最小基材厚度
- 混凝土 C 20/25, f_{ck.cube} = 25 N/mm² (MPA)

錨栓緊固技術指引

鋼材破壞

特性荷載															
錨栓尺寸			8			10			12			14		1	6
類型	HUS4	H, HF, C			H, HF, C, A, AF				Н		Н	, HF, A, <i>A</i>	\F	H,	HF
		h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
標稱埋置深度	h _{nom} [mm]	40	60	70	55	75	85	60	80	100	65	85	115	85	130

特性荷載

14 17 19 44															
錨栓尺寸		8				10			12			14		1	6
類型	HUS4		H, HF, C			HF, C, A,	AF		Н		Н	, HF, A, <i>A</i>	\F	H,	HF
		h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
非開裂混凝土															
張力 N _{Rk}	[kN]	8,3	16,2	20,7	13,0	22,0	27,6	15,3	24,5	35,1	17,0	26,6	43,3	22,0	46,0
剪力 V _{Rk}	[kN]	8,3	18,8	21,9	13,6	28,8	32,0	30,6	38,9	44,9	34,1	53,1	62,0	53,5	73,1
開裂混凝土															
張力 N _{Rk}	[kN]	5,5	11,3	14,5	9,5	15,8	19,3	10	17,2	24,6	11,9	18,6	30,3	16,0	32,0
剪力 V _{Rk}	[kN]	5,8	18,8	21,9	9,5	28,8	32,0	21,4	34,4	44,9	23,8	37,2	60,6	37,4	73,1

設計荷載

錨栓尺寸			8			10			12			14		1	6
類型	HUS4		H, HF, C		Н,	HF, C, A,	AF		Н		Н	, HF, A, <i>A</i>	AF.	H,	HF
		h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
非開裂混凝土															
張力 N _{Rk}	[kN]	5,6	10,8	13,8	7,2	14,7	18,4	10,2	16,4	23,4	11,4	17,7	28,8	14,7	30,7
剪力 V _{Rk}	[kN]	5,6	15,0	17,5	9,1	23,0	25,6	20,4	31,1	35,9	22,7	35,4	49,6	35,6	58,5
開裂混凝土															
張力 N _{Rk}	[kN]	3,7	7,5	9,6	5,3	10,5	12,9	6,7	11,5	16,4	7,9	12,4	20,2	10,7	21,3
剪力 V _{Rk}	[kN]	3,9	15,0	17,5	6,4	21,1	25,6	14,3	22,9	32,8	15,9	24,8	40,4	25,0	49,3

建議荷載

錨栓尺寸	8			10				12			14		1	6	
類型	HUS4		H, HF, C		Н, І	HF, C, A,	AF		Н		Н	, HF, A, <i>A</i>	٩F	Н,	HF
		h _{nom1} h _{nom2} h _{nom3}			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
非開裂混凝土															
張力 N _{Rk}	[kN]	4.0	7.7	9.8	5.2	10.5	13.1	7.3	11.7	16.7	8.1	12.6	20.6	10,5	21,9
剪力 V _{Rk}	[kN]	4.0	10.7	12.5	6.5	16.5	18.3	14.6	22.2	25.7	16.2	25.3	35.4	25.5	41.8
開裂混凝土															
張力 N _{Rk}	[kN]	2.6	5.4	6.9	3.8	7.5	9.2	4.8	8.2	11.7	5.7	8.9	14.4	7,6	15,2
剪力 V _{Rk}	[kN]	2.8	10.7	12.5	4.5	15.1	18.3	10.2	16.4	23.4	11.4	17.7	28.8	17.8	35.2

用於操作的整體部分安全係數 γ = 1,4。用於操作的部分安全係數取決於荷載類型,並應來自國家法規。

錨栓緊固技術指引 3.3.5

121

地震荷載資料 (單個錨栓)

本節中的所有數據適用於:

- 正確安裝(請參閱安裝說明)
- 無邊距和間距影響
- 鋼材破壞

- 最小基材厚度
- 混凝土 C 20/25, f_{ck,cube} = 25 N/mm² (MPA)
- α_{αap} = 1,0 (使用喜利得地震填充墊片)

錨栓尺寸		8	10	12	14
標稱錨栓埋深範圍		h _{nom3}	h _{nom3} h _{nom3}		h _{nom3}
	h _{nom} [mm]	70	85	100	115

抗震性能 C2 類別情況下的特性荷載

錨栓尺寸		8	10	12	14	
喜利得填充墊片						
類型 HU	JS4	H, HF	H, HF, A, AF	Н	H, HF, A, AF	
張力 N _{Rk,seis}	FL-N II	2,7	5,4	11,4	17,7	
剪力 V _{Rk,seis}	[kN]	13,9	21,5	27,2	46,5	
沒有喜利得填充墊片						
類型 H	IUS4	H, HF, C	H, HF, C, A, AF	Н	H, HF, A, AF	
張力 N _{Rk,seis}	[L.N.I]	2,7	5,4	11,4	17,7	
剪力 V _{Rk,seis}	[kN]	9,4	13,7	22,5	34,4	

抗震性能 C2 類別情況下的設計荷載

錨栓尺寸		8	10	12	14
喜利得填充墊片 (α _{gap} = 1,0)					
類型	HUS4	H, HF	H, HF, A, AF	Н	H, HF, A, AF
張力 N _{Rd,seis}	[IzN]]	1,8	3,6	7,6	11,8
剪力 V _{Rd,seis}	— [kN]	11,1	17,2	21,8	34,3
沒有喜利得填充墊片 (a _{gap} = 0,5)					
類型	HUS4	H, HF, C	H, HF, C, A, AF	Н	H, HF, A, AF
張力 N _{Rd,seis}	FL-N 17	1,8	3,6	7,6	11,8
剪力 V _{Rd,seis}	— [kN]	3,8	5,5	9,0	13,8

抗震性能 C1 類別情況下的特性荷載

錨栓尺寸		8		10		12		14		16	
Туре	HUS4	H,C,HF		H,HF,	H,HF,C,A,AF		Н		H,HF,A,AF		HF
		h _{nom2}	h _{nom3}								
喜利得填充墊片 (α _{gap} = 1,0) (HUS4-H and HUS4-A)											
張力 N _{Rk,seis}	D-ND	9,6	12,3	13,4	16,4	14,6	20,9	15,8	25,7	7,5	19
剪力 V _{Rk,seis}	– [kN]	18,8	18,8	26,7	26,7	29,2	38,9	22,5	34,5	31,8	25,3
沒有喜利得填充墊片 (a _{gap} = 0,5)	沒有喜利得填充墊片 (α_{aao} = 0,5)										
張力 N _{Rk,seis}	TI-NII	9,6	12,3	13,4	16,4	14,6	20,9	15,8	25,7	7,5	19
剪力 V _{Rk,seis}	– [kN]	9,4	9,4	13,4	13,4	14,6	19,5	11,3	17,3	15,9	12,7

抗震性能 C1 類別情況下的設計荷載

錨栓尺寸		3	3	1	0	1	2	1	4	1	6
類型	HUS4	H,C	H,C,HF		H,HF,C,A,AF		Н		H,HF,A,AF		HF
		h _{nom2}	h _{nom3}								
喜利得填充墊片 (α _{gap} = 1,0) (HUS4-H and HUS4-A)											
拉力 N _{Rd,seis}	[]_ANI]	6,4	8,2	9,0	10,9	9,7	13,9	10,5	17,2	5,0	12,7
剪力 V _{Rd,seis}	— [kN]	12,8	15,0	17,9	21,4	19,5	27,9	18,0	27,6	21,2	20,2
沒有喜利得填充墊片 (α _{gap} = 0,5)											
拉力 N _{Rd,seis}	[]_ANI]	6,4	8,2	9,0	10,9	9,7	13,9	10,5	17,2	5,0	12,7
剪力 V _{Rd,seis}	— [kN]	6,4	7,5	9,0	10,7	9,7	13,9	9,0	13,8	10,6	10,1

靜態和準靜態荷載 (單個錨栓)

本節中的所有數據適用於:

- 正確安裝(請參閱安裝說明)
- 無邊距和間距影響
- 最小基材厚度
- 如需更多防火性資料,請參閱 ETA-20/0867。

混凝土中的 HUS4-H 在火災暴露情況下的基本特性

緊固件尺寸 HUS4-	-H (F)				8		10			
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
標稱埋置深度		h _{nom}	[mm]	40	60	70	55	75	85	
拉力和剪力荷載的	鋼材破壞 (F _{Rk,}	$_{s,fi} = N_{Rk,s,fi} = V_{Rk,s,fi}$)							
	R30	$F_{Rk,s,fi}$	[kN]	2,6			4,1	4	,2	
	R60	$F_{Rk,s,fi}$	[kN]		1,9		3,1	3,1		
	R90	$F_{Rk,s,fi}$	[kN]		1,2		2,2	2,3		
特性荷載	R120	$F_{Rk,s,fi}$	[kN]		0,9		1,5	1	,7	
村注何戦	R30	$M^0_{ m Rk,s,fi}$	[Nm]	2,3 1,7		4,8	4	,9		
	R60	M ⁰ _{Rk,s,fi}	[Nm]			3,6	3	,7		
	R90	$M^0_{ m Rk,s,fi}$	[Nm]	1,1		2,6	2,7			
	R120	$M^0_{Rk,s,fi}$	[Nm]	0,8			1,8	1,9		
拔出破壞										
特性荷載	R30 R60 R90	$N^{\scriptscriptstyle 0}_{_{Rk,p,fi}}$	[kN]	1,3	2,8	3,6	2,3	3,9	4,7	
	R120	$N^0_{Rk,p,fi}$	[kN]	1,0	2,2	2,8	1,9	3,1	3,7	
混凝土錐狀破壞										
特性荷載	R30 R60 R90	N ⁰ _{Rk,c,fi}	[kN]	0,8	2,6	4,0	2,0	4,7	6,5	
	R120	N ⁰ _{Rk,c,fi}	[kN]	0,7	2,1	3,2	1,6	3,7	5,2	
邊距										
R30 至 R120		$\mathbf{C}_{\text{cr,fi}}$	[mm]			21	nef			
緊固件間距										
R30 至 R120		S _{cr,fi}	[mm]			21	nef			
混凝土橇破破壞										
R30 至 R120		K ₈	[-]	1,0	2	,0	1,0	2	,0	

混凝土中的 HUS4-H 在火災暴露情況下的基本特性

緊固件尺寸 HUS4-H (F)				12			14		1	6
				h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
標稱埋置深度		h _{nom}	[mm]	60	80	100	65	85	115	85	130
拉力和剪力荷載的鋼材	才破壞 (F _{Rk}	$_{,s,fi} = N_{Rk,s,fi} = V_{Rk,s}$	_{fi})								
	R30	$F_{Rk,s,fi}$	[kN]	7,5	7,6	7,6	10,3	10,4	10,5	10,6	10,7
	R60	$F_{Rk,s,fi}$	[kN]	5,5	5,7	5,8	7,7	7,9	8,0	8,1	8,2
	R90	$F_{Rk,s,fi}$	[kN]	3,7	3,9	4,1	5,2	5,6	5,8	5,7	5,9
特性荷載	R120	$F_{Rk,s,fi}$	[kN]	2,8	3,0	3,1	3,9	4,2	4,4	4,3	4,5
付注何戦	R30	M ⁰ _{Rk,s,fi}	[Nm]	11,4	11,6	11,6	18,9	19,2	19,3	23,7	23,9
	R60	M ⁰ _{Rk,s,fi}	[Nm]	8,4	8,8	8,9	14,1	14,6	14,8	18,1	18,3
	R90	$M^0_{Rk,s,fi}$	[Nm]	5,7	6,0	6,2	9,5	10,2	10,7	12,7	13,2
	R120	$M^0_{Rk,s,fi}$	[Nm]	4,3	4,6	4,7	7,2	7,7	8,1	9,6	10,0
拔出破壞											
特性荷載	R30 R60 R90	$N^0_{\ Rk,c,fi}$	[kN]	2,6	4,2	6,1	2,9	4,5	7,5	4,6	8,7
	R120	N ⁰ _{Rk,c,fi}	[kN]	2,1	3,4	4,9	2,3	3,6	6,0	3,7	7,0
混凝土錐狀破壞											
持性荷載	R30 R60 R90	N ⁰ _{Rk,c,fi}	[kN]	2,4	5,4	9,8	2,9	6,1	13,9	6,2	19,4
	R120	N ⁰ _{Rk,c,fi}	[kN]	1,9	4,3	7,8	2,3	4,9	11,1	4,9	15,5
邊距											
R30 至 R120		C _{cr,fi}	[mm]				21	nef			
緊固件間隔											
R30 至 R120		S _{cr,fi}	[mm]				2 (C _{cr,fi}			
Concrete pry-out failu	ıre										
混凝土橇破破壞		k ₈	[-]				2	,0			
	国深度應該比給定值	直至少增加 30 mr	n。								

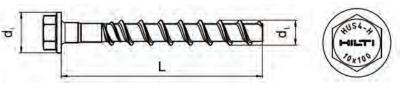
材料

機械性能

錨栓尺寸		8	10	12	14	16
標稱抗拉強度 f _{uk}	[N/mm ²]	758	799	767	728	622
降伏強度 f _{yk}	[N/mm ²]	606	639	613	582	494
受力截面 A _s	[mm²]	47,5	68,9	103	139	173
力矩 W	[mm³]	35	67	130	213	321
特性彎矩荷載 Mº _{Rk,s}	[Nm]	32	64	120	186	240

材料品質

19110000	
類型	材料
HUS4 - H,A,C	碳鋼,鍍鋅
HUS4 - HF,AF	碳鋼、多重塗層 ^a


a) 與塗層厚度為 40µm 的標準熱浸鍍鋅 (HDG) 系統相比,多重塗層具有更高的耐腐蝕性。

錨栓頭類型

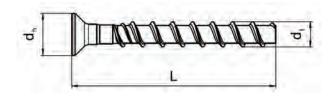
類型	零件	
HUS4-H HUS4-HF	六角頭	
HUS4-C	沉頭	
HUS4-A	外牙螺紋	喜利得 HUS4-A 尺寸 10 具有外牙螺紋 M12,而尺寸 14 具有外牙螺紋 M16

緊固件尺寸和標記 HUS4-H(F)

錨栓尺寸			8	10	12	14	16
類型		HUS4	H, HF	H, HF	Н	H,HF	H, HF
螺紋外部直徑	d _t	[mm]	10,50	12,70	14,70	16,70	18,80
整合墊片直徑	d _i	[mm]	17,50	20,50	23,60	29,00	32,60
螺絲長度(最小/最大)	L	[mm]	45/150	60/305	70/150	75/150	100/205

HUS4: 喜利得通用螺絲第 4 代

錨栓緊固技術指引


H: 六角頭

10: 螺絲直徑

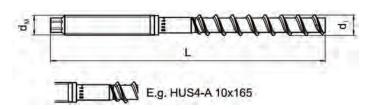
100: 螺絲總長度

緊固件尺寸和標記 HUS4-C

Anchor size			8	10
Туре		HUS4	С	С
螺紋外部直徑	d _t	[mm]	10,50	12,70
沉頭直徑	d _h	[mm]	18,00	21,00
螺絲長度(最小/最大)	L	[mm]	55/85	70/120

HUS4: 喜利得通用螺絲第 4 代

C: 沉頭


10: 螺絲直徑

100: 螺絲總長度

緊固件尺寸和標記 HUS4-A(F)

錨栓尺寸			10	14
類型		HUS4	A, AF	A, AF
螺紋外部直徑	d _t	[mm]	12,70	16,70
公制螺紋直徑	d _M	[mm]	M12	M16
螺絲長度(最小/最大)	L	[mm]	120/165	155/205

HUS4: 喜利得通用螺絲第 4 代

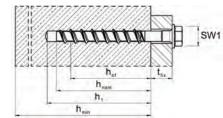
A: 外牙頭

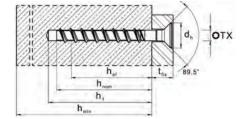
10: 螺絲直徑

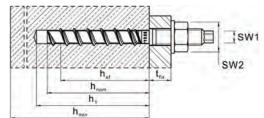
100: 螺絲總長度

8:碳鋼 8.8

K: 螺絲長度(更多資訊參見 ETA)


安裝資訊


尺寸 8-12 安裝詳細資料


錨栓尺寸				8			10		12		
類型		HUS4		H, HF, C		H, HF, C, A, AF			Н		
ATT TO LITTLE WAY TO THE		. ,	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
標稱埋置深度		[mm]	70	55	75	85	60	80	60	80	100
鑽頭標稱直徑	d_{0}	[mm]	8			10			12		
鑽孔直徑	d _f ≤	[mm]	12			14					
六角頭扳手尺寸	SW1	[mm]		13		15					
外牙螺紋頭扳手尺寸	SW1	[mm]		-		8			-		
外牙螺紋頭螺帽扳手尺寸	SW2	[mm]		-	,	19					
沉頭星型扳手尺寸	TX	-		45			50			-	
沉頭直徑	d _h	[mm]	18			21			-		
清潔孔的鑽孔深度;或倒吊未清潔孔	h₁≥	[mm]	50	70	80	65	85	95	70	90	110
未清潔孔鑽孔深度 在牆面或地面鑽孔	h₁≥	[mm]	66	86	96	85	105	115	94	114	134

尺寸 14-16 安裝詳細資料

錨栓尺寸				14		1	6
類型		HUS4	H, HF, A, AF			H, HF	
			h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
標稱埋置深度		[mm]	115	85	130	85	130
鑽頭標稱直徑	d _o	[mm]	14			16	
鑽孔直徑	d _f ≤	[mm]	18			20	
六角頭扳手尺寸	SW1	[mm]		21		24	
外牙螺紋頭扳手尺寸	SW1	[mm]		12		-	
外牙螺紋頭螺帽扳手尺寸	SW2	[mm]	24			-	
清潔孔鑽孔深度;或倒吊未清潔孔	h₁≥	[mm]	75	95	125	95	140
未清潔鑽孔深度,在牆面或地面鑽孔	h₁≥	[mm]	103	123	153	-	-

錨栓緊固技術指引

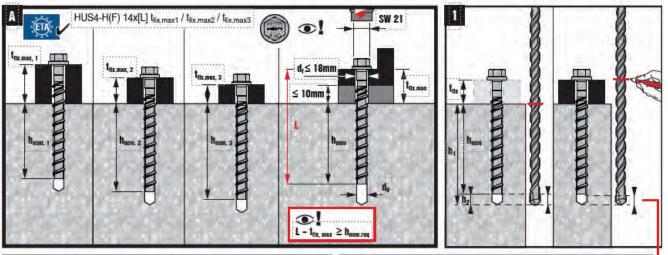
125

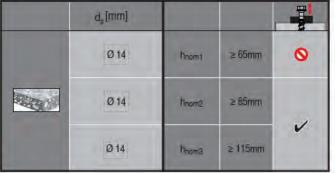
安裝設備表:

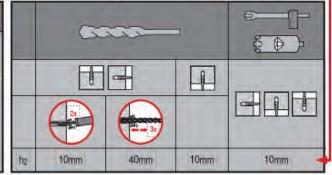
針對實心磚和氣泡混凝土的安裝工	具	8	10	12	14	16
	HUS4	H,C,HF	H, HF, C, A, AF	Н	H, HF, A, AF	H, HF
電鎚鑽				TE4 - TE30		
適用於混凝土、實心黏土磚及實心 鑽頭	石灰砂磚的	TE-CX 8	TE-CX 10	TE-CX 12	TE-CX 14	TE-CX 16
六角螺絲的套筒扳手(SW1)		SI-S ½" 13S	SI-S ½" 15S	S ½" 17S	SI-S ½" 21S	S ½" 24S
用於外牙螺紋頭螺絲的套筒扳手		-	SI-S ½" 8S	-	SI-S ½" 12S	-
用於外牙螺紋頭螺絲之螺帽的套筒	顶手 (SW2)		SI-S ½" 19S	-	SI-S ½" 24S	-
用於沉頭螺絲的星型扳手		S-SY TX45	S-SY TX50	-	-	-
檢查標尺用於重複使用性 1)		HRG 8	HRG 10	HRG 12	HRG 14	HRG 16
針對開裂混凝土和非開裂混凝土的]安裝工具	SIW 6AT-A22 1/2" SIW 4AT-22 1/2" SIW 6-22 1/2" gear 1	SIW 22T-A 1/2" SIW 22T-A 3/4" SIW 6AT-A22 1/2" SIW 4AT-22 1/2" SIW 6-22 1/2" SIW 8-22 1/2" gear 1 SIW 9-A22 3/4"		SIW 22T-A 1/2" SIW 22T-A 3/4" SIW 6-22 1/2" SIW 8-22 1/2" SIW 9-A22 3/4"	
針對實心磚和氣泡混凝土的安裝工	具	SIW 6AT-A22 1/2"	, SIW 4AT-22 1/2"			
針對空心樓板的安裝工具		SIW 6AT-A22 1/2" SIW 4AT-22 1/2"	SIW 6AT-A22 1/2" SIW 4AT-22 1/2" SIW 22T-A 1/2" SIW 22T-A 3/4" SIW 6AT-A22 1/2"		-	

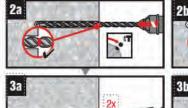
¹⁾ 對於 HUS4-A 於 HUS4-H

安裝參數

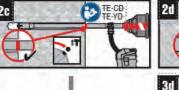

XX > XX = XX																
錨栓尺寸				8			10			12		14		16		
類型		HUS4		0			10			12			14		_	
標稱埋置深度	h _{nom}	[mm]	40	60	70	55	75	85	60	80	100	65	85	115	85	130
最小基材厚度	h _{min}	[mm]	80	100	120	100	130	140	110	130	150	120	160	200	130	195
最小間距	S _{min}	[mm]		35			40			50			60		9	0
最小邊距	C _{min}	[mm]		35			40			50			60		6	5
劈裂破壞的臨界間距	S _{cr,sp}	[mm]		3 h _{ef}			3.3 h _{ef}		3.3 h _{ef}					3.3	3 h _{ef}	
劈裂的臨界邊距	C _{cr,sp}	[mm]		1.5 h _{ef}			1.65 h _e	:	1.65 h _{ef}			1.65 h _{ef}			h _{ef}	
混凝土錐體破壞的臨界間距	S _{cr,N}	[mm]	3 h _{ef}													
混凝土錐體破壞的臨界邊距	C _{cr,N}	[mm]	1,5 h _{ef}													

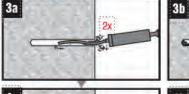

對於小於臨界間距(臨界邊距)的間距(邊距),必須減小設計荷載(請參閱系統設計荷載)。劈裂破壞的臨界間距和臨界邊距僅適用於非開裂混凝土。 對於開裂混凝土,只有混凝土錐體破壞的臨界間距和臨界邊距是決定性因素。

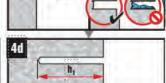

設置說明

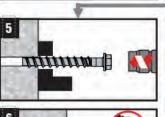

*有關安裝的詳細資料,請參閱產品包裝中提供的使用說明

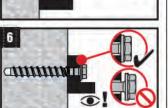
調整的安裝說明

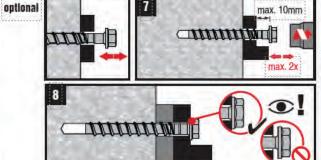












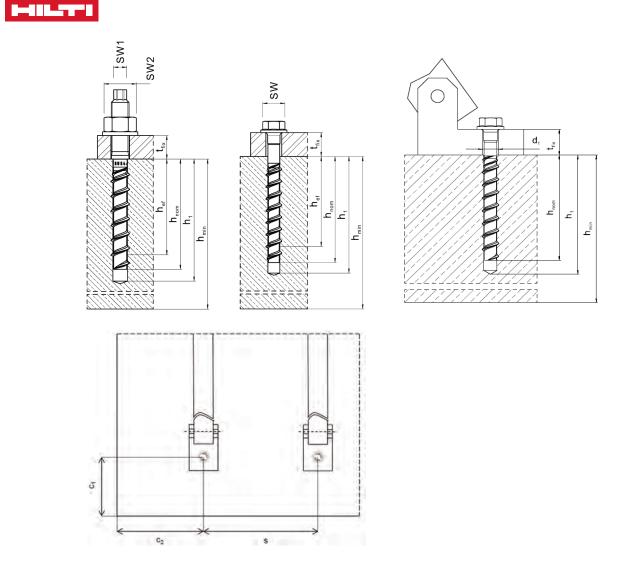
SIW 22-A 1/2" (01)	0
SIW 6AT-A22 1/2" (01)	0
SIW 22T-A 1/2" (01)	V
SIW 22T-A 1/4" (01)	V
SIW 9-A22 ² / ₄ " (01)	V

標準和新拌混凝土中臨時應用的基本荷載資料

<28 天, f_{ck,cube} ≥ 10 N/mm²

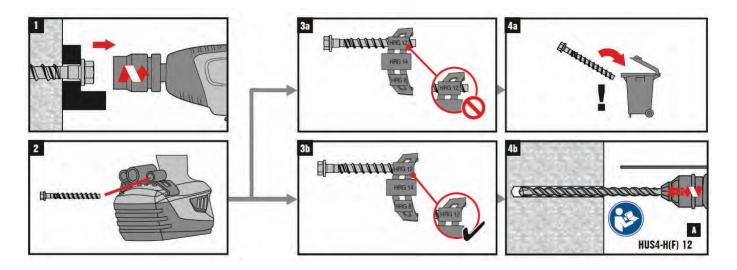
本節中的所有資料適用於下列條件:

- 強度類別,f_{ck.cube}≥ 10 N/mm²
- 僅限臨時用途
- 螺絲可重複使用,每次使用前須根據喜利得使用說明檢查,以便利用喜利得檢查工具 HRG 檢測
- 設計荷載只對單個錨栓有效
- 設計荷載適用於所有荷載方向,以及開裂和非開裂混凝土
- 最小基材厚度
- 無邊距和間距影響
- 適用於 HUS4-H 和 HUS4-A
- 本節所有資料均根據 DIBt 認證 Z-21.8-2137 2021-12-21 整理而成


安裝參數

錨栓尺寸	錨栓尺寸 HUS4-H (A)		8		10		12		14		16				
			h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
標稱埋置深度	h _{nom}	[mm]	75	85	55	75	85	60	80	100	65	85	115	85	115
	f _{ck,cube} ≥ 10 N/mm²	[kN]	3,3	4,7	3,3	5,3	6,3	2,6	5,4	7,8	4,4	7,0	12,3	5,5	12,6
拉力 N _{rd} =	f _{ck,cube} ≥ 15 N/mm²	[kN]	4,0	5,7	4,0	6,4	7,8	3,5	7,3	10,6	5,4	8,5	15,0	7,5	17,0
= 剪力 V _{rd}	f _{ck,cube} ≥ 20 N/mm²	[kN]	4,6	6,6	4,7	7,4	9,0	4,0	8,4	12,2	6,2	9,9	17,3	8,7	19,7
	f _{ck,cube} ≥ 25 N/mm²	[kN]	5,1	7,4	5,3	8,3	10,1	4,5	9,4	13,6	6,9	11,1	19,3	9,7	22,0

安裝細節


					,			,						,	
錨栓尺寸	HU	JS4-H (A)	8			10		12		14			16		
			h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}
標稱埋置深度	h _{nom}	[mm]	60	70	55	75	85	60	80	100	65	85	115	85	130
鑽孔深度	h₁≥	[mm]	70	80	65	85	95	70	90	110	75	95	125	95	140
選項1															
最小邊距	C ₁ ≥	[mm]	80	100	75	100	115	65	105	135	85	115	180	105	180
最小基材厚度	h _{min} ≥	[mm]	120	150	115	150	175	110	160	205	130	175	255	160	220
選項2															
最小邊距	C ₁ ≥	[mm]	85	110	85	120	135	65	120	160	100	135	300	115	215
最小基材厚度	h _{min} ≥	[mm]	100	120	100	130	140	110	130	150	120	160	200	130	195

最小邊距	c ₂ ≥ [n	mm]	1.5 x c ₁									
最小間距	s _{min} ≥ [n	mm]	3.0 x c ₁									
檢查工具			HRG 8	HRG 10	HRG 12	HRG 14	HRG 16					
六角頭鑽孔直徑	d _f ≤ [n	mm]	14	16	20	22	24					
A型外牙頭鑽孔直徑	d _f ≤ [n	mm]	-	14	-	18	-					
六角頭套筒尺寸	sw		13	15	17	21	24					
A型外牙頭套筒尺寸	SW1 (SW2	2)	-	8 (17)	-	12 (24)	-					

設置說明

* 如需安裝的詳細資訊,請參閱尺寸 10 螺絲產品範例包裝隨附的使用說明

實心磚石單位中(單個錨栓)的基本荷載資料

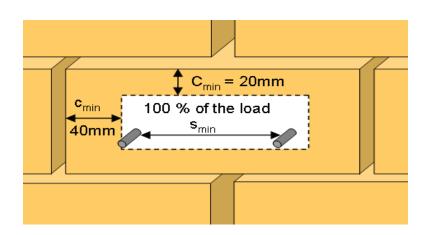
本節中的所有資料適用於下列項目:

- 適用於使用 TE 電鎚鑽鑽孔的荷載值(不使用 PPW 的鎚鑽)
- 正確安裝錨栓(請參閱使用說明、安裝詳細資料)
- 建議的安裝設備:SIW 6AT
- 空心或孔洞空間與實心空間的比例不得超過層間結合面積的 15%
- 孔周圍的邊緣區域必須至少達到 70 mm
- 有關邊距、間距及其他影響,請參閱下文
- 本節提供的所有資料均符合喜利得技術資料標準

錨栓尺寸			8	10
標準埋置深度	h _{nom}	[mm]	60	75
Mz, KS 的鑽孔直徑	d _o	[mm]	8	10
Vbl, PPW, Leca5 [®] 的鑽孔直徑	d _o	[mm]	6	8

	錨栓尺寸		8 H, C, HF	10 H, C, HF
	抗壓強度類別	[N/mm²]		
	實心黏土磚	≥ 12	1,4	1,4
	Mz 12 / 2,0 (EN 771-1)	≥ 20	1,8	1,8
	實心石灰砂磚	≥ 12	3,7	4,2
	KS 12 / 2,0 (EN 771-2)	≥ 20	4,8	5,4
1	氣泡混凝土 PPW 6-0,4 (EN 771-4)	≥ 6	1,0	1,6
	實心輕質混凝土磚 Vbl, 2DF (EN 771-3) 實心輕質混凝土磚 Leca5® Murblock 19 (EN 771-3)	≥5	2,0	2,0

	錨栓尺寸									
	細性八寸		H, C, HF	H, C, HF						
	抗壓強度類別	[N/mm²]	V _{rec} 剪	力荷載						
T	實心黏土磚 Mz 12 / 2,0 (EN 771-1)	≥ 12	3,8	5,5						
9	實心石灰砂磚 KS 12 / 2,0 (EN 771-2)	≥ 12	4,6	5,7						
T D	氣泡混凝土 PPW 6-0,4 (EN 771-4)	≥ 6	1,3	1,5						
	實心輕質混凝土磚 Vbl, 2DF (EN 771-3) 實心輕質混凝土磚 Leca5® Murblock 19 (EN 771-3)	≥5	2,1	2,8						


磚牆中允許的錨栓位置

邊距和間距影響

- HUS4 錨栓的技術資料為 MZ 12、KS 12、Vbl 6、PPW 6 及 Leca5® 的參考荷載。由於天然石材實心磚差異較大,建議進行工 地錨栓測試以驗證技術資料
- 如圖所示在實心磚中心安裝並測試 HUS4 錨栓。HUS4 錨栓未在實心磚或空心磚之間的砂漿接合處中測試,但預計會減少荷載
- 對於無法確定磚中錨栓位置的磚牆,建議進行 100% 的錨栓測試
- 空邊至實心磚石(Mz、KS 及輕質混凝土)單位的距離 ≥ 200 mm
- 空邊至實心磚石(蒸壓氣泡混凝土)單位的距離 ≥ 170 mm
- 下方圖開始顯示水平和垂直砂漿接合處(c_{min})的最小距離
- 最小錨栓間距(s_{min})在一塊磚塊中是≥80 mm

限制

- 所有資料均用於非結構應用的多種用途
- 灰泥、礫石、襯壁或整平層會視為非承載層,且在計算埋置深度時可能不會考慮在內
- 拉力荷載的決定性荷載是 N_{rec} 值(磚斷裂、拔出)和 N_{max.ob} 值(拔出一塊磚)中的較小值

在預應力空心板 (HCS) 中用於永久緊固的單個錨栓的基本荷載資料

本節中的所有資料適用於下列項目:

- 正確安裝錨栓(請參閱使用說明、安裝詳細資料)
- 建議的鑽孔機器: TE2 A22, 建議的安裝設備: SIW 6AT-A
- 無邊距和間距影響
- 比例核心寬度 / 腹板厚度 ≤ 5,3
- C30/37 的非開裂混凝土
- 本節提供的所有資料均符合喜利得技術資料標準

錨栓尺寸			8	10
標準埋置深度	h _{nom}	[mm]	$d_{_{b}}$	d _b
鑽孔深度	d_0	[mm]	≥ d _b +	- 10 mm

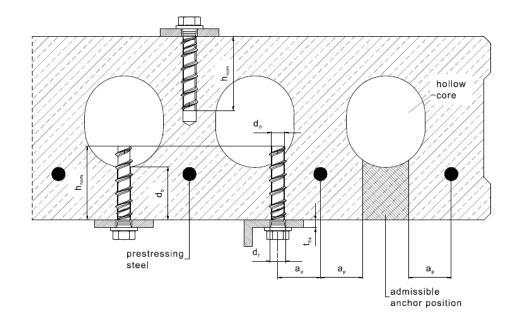
特性荷載

錨栓尺寸		HUS4		8					10					
混凝土強度				C30/37		C45	5/55		C30/37	C45/55				
底部法蘭厚度	d _b ≥	[mm]	30	30 35 40			40	30	35	40	35	40		
拉力荷載	N _{Rk}	[kN]	2,0	5,8	7,1	7,1	8,7	2,0	5,8	7,1	7,1	8,7		
剪力荷載	$V_{\rm Rk}$	[kN]	2,0	9,3	11,4	11,4	14,0	2,0	10,2	12,4	12,5	15,2		

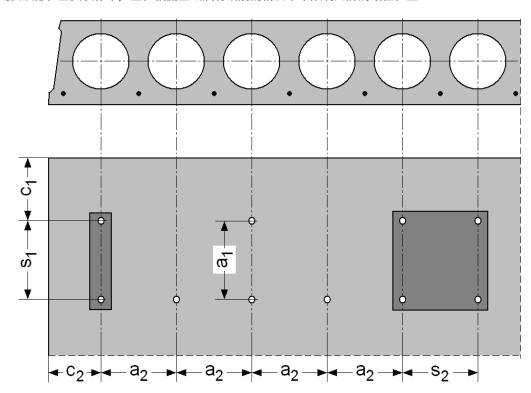
設計荷載

DO THE WAY												
錨栓尺寸		HUS4			8			10				
混凝土強度				C30/37			5/55	C30/37			C45/55	
底部法蘭厚度	d _b ≥	[mm]	30	35	40	35	40	30	35	40	35	40
拉力荷載	N_{Rd}	[kN]	1,3	3,2	3,9	4,0	4,8	1,3	3,2	3,9	4,0	4,8
剪力荷載	V_{Rd}	[kN]	1,3	6,2	7,6	7,6	9,3	1,3	6,8	8,3	8,3	10,1

建議荷載

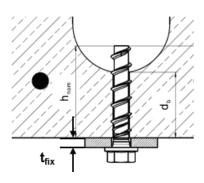

錨栓尺寸		HUS4			8	10						
混凝土強度				C30/37		C45	5/55		C30/37	C45/55		
底部法蘭厚度	d _b ≥	[mm]	30	35	40	35	40	30	35	40	35	40
拉力荷載	N _{Rec}	[kN]	0,95	2,3	2,8	2,9	3,4	0,95	2,3	2,8	2,9	3,4
剪力荷載	V _{Rec}	[kN]	0,95	4,4	5,4	5,4	6,6	0,95	4,9	5,9	5,9	7,2

用於操作的整體部分安全係數 γ = 1,4。用於操作的部分安全係數取決於荷載類型,並應來自國家法規。


130

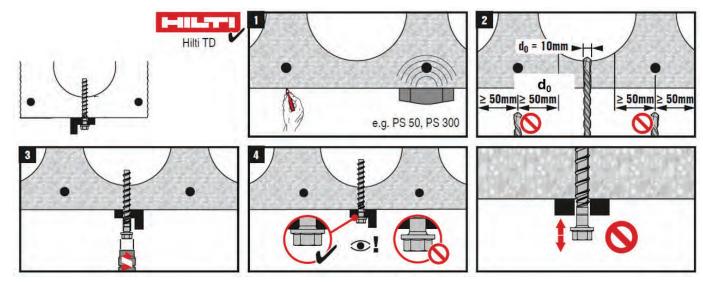
131

錨栓緊固技術指引



荷載建議也適用於頂部位置安裝作業,且在相關區域沒有鋼筋的情況下不限制允許的錨栓位置

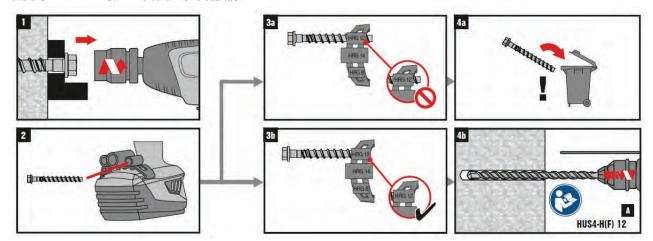
錨栓尺寸			8	10
類型		HUS4	C, H, HF	C, H, HF, A, AF
最小和特性間距	S _{min} = S _{cr}	[mm]	4 *	d _b
最小和特性邊距	C _{min} =	[mm]	4 *	d _b
最小團體距離	a _{min}	[mm]	4 *	d _b


	尺寸	長度	d _b =30	[mm]	d _b =35	[mm]	d _b =40) [mm]	d _b =50	[mm]
錨栓類型	[mm]	[mm]	t _{fix,min} [mm]	t _{fix,max} [mm]						
		45	5	10	5	5	-	-	-	-
		55	15	20	15	15	-	-	-	-
		65	5	30	5	25	5	20	5	10
LILIO4 LI/F)		75	10	40	10	35	10	30	10	20
HUS4-H(F)	8	85	20	50	20	45	20	40	20	30
		100	35	65	35	60	35	55	35	45
		120	55	85	55	80	55	75	55	65
		150	85	115	85	110	85	105	85	95
		60	5	20	5	15	5	10	-	-
		70	15	30	15	25	15	20	-	-
		80	5	40	5	35	5	30	5	20
LILIO4 LI/F)	10	90	10	50	10	45	10	40	10	30
HUS4-H(F)	10	100	20	60	20	55	20	50	20	40
		110	30	70	30	65	30	60	30	50
		130	50	90	50	85	50	80	50	70
		150	70	110	70	105	70	100	70	90

設置說明

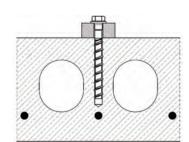
* 有關安裝的詳細資料,請參閱產品包裝中提供的使用說明

空心樓板安裝 - 範例尺寸 10



在預應力空心板 (HCS) 中用於臨時緊固的單個錨栓的基本荷載資料

本節中的所有資料適用於下列項目:


- 正確安裝(請參閱安裝說明)
- 必須使用 HUS HRG 檢查工具驗證螺絲磨損情況

- 無邊距和間距影響
- 比例核心寬度 / 腹板厚度 ≤ 5,3
- C30/37 至 C50/60 的非開裂混凝土

HCS 中臨時緊固的安裝位置:

- 允許樓板的上方位置。
- 錨栓安裝在距離實心部分最厚截面 ± 10 mm 的位置。

錨栓尺寸			10	12	14
標準埋置深度	h _{nom}	[mm]	55 / 75 / 85	60 / 80 / 100	65 / 85 / 115
鑽孔深度	h, ≥	[mm]		h _{nom} + 10 mm	

特性荷載:混凝土 C30/37

錨栓尺寸				10			12		14		
類型 HUS4			A, AF, C, H, HF			Н			A, AF, H, HF		
標準埋置深度	h_{nom}	[mm]	55	75	85	60	80	100	65	85	115
特性荷載、拉力	N _{Rk}	[kN]	14,3	22,1	23,6	16,9	24,0	30,1	18,2	26,5	37,6
特性荷載、剪力	$V_{\rm Rk}$	[kN]	15,0	25,1	26,4	23,3	28,3	33,3	25,5	31,4	37,0

設計荷載:混凝土 C30/37

錨栓尺寸				10			12		14			
類型	HUS4			, AF, C, H, F	łF	н				A, AF, H, HF		
標準埋置深度	h _{nom}	[mm]	55	75	85	60	80	100	65	85	115	
設計荷載、拉力	N _{Rd}	[kN]	9,6	14,7	15,8	11,2	16,0	20,1	12,1	17,7	25,1	
設計荷載、剪力	V_{Rd}	[kN]	10,0	16,7	17,6	15,5	18,8	22,2	17,0	20,9	24,7	

建議荷載:混凝土 C30/37

錨栓尺寸	錨栓尺寸			10			12		14			
類型 HUS4			A,	A, AF, C, H, HF			Н			A, AF, H, HF		
標準埋置深度	h _{nom}	[mm]	55	75	85	60	80	100	65	85	115	
建議荷載、拉力	$N_{_{\mathrm{Rk}}}$	[kN]	6,8	10,5	11,3	8,0	11,4	14,3	8,7	12,6	17,9	
建議荷載、剪力	V_{Rk}	[kN]	7,2	12,0	12,6	11,1	13,5	15,9	12,1	15,0	17,6	

錨栓緊固技術指引

用於操作的整體部分安全係數 γ = 1,4。用於操作的部分安全係數取決於荷載類型,並應來自國家法規。

特性荷載:混凝土 C45/55

錨栓尺寸	苗栓尺寸			10			12		14		
類型		HUS4	A,	AF, C, H, H	1F	Н			A, AF, H, HF		
標準埋置深度	h _{nom}	[mm]	55	75	85	60	80	100	65	85	115
特性荷載、拉力	N _{Rd}	[kN]	17,6	27,1	29,0	20,7	29,4	36,9	22,3	32,5	46,1
特性荷載、剪力	V_{Rd}	[kN]	18,4	25,1	26,4	23,3	28,3	33,3	25,9	31,4	37,0

設計荷載:混凝土 C45/55

錨栓尺寸	錨栓尺寸			10			12		14			
類型	HUS4			A, AF, C, H, HF			Н			A, AF, H, HF		
標準埋置深度	h _{nom}	[mm]	55	75	85	60	80	100	65	85	115	
設計荷載、拉力	N_{Rd}	[kN]	11,7	18,1	19,3	13,8	19,6	24,6	14,9	21,7	30,7	
設計荷載、剪力	V_{Rd}	[kN]	12,3	16,7	17,6	15,5	18,8	22,2	17,3	20,9	24,7	

建議荷載:混凝土 C45/55

錨栓尺寸				10			12			14	
類型		HUS4	A,	, AF, C, H, F	1F		Н		,	A, AF, H, HF	
標準埋置深度	h _{nom}	[mm]	55	75	85	60	80	100	65	85	115
建議荷載、拉力	N _{Rk}	[kN]	6,8	10,5	11,3	8,0	11,4	14,3	8,7	12,6	17,9
建議荷載、剪力	V_{Rk}	[kN]	7,2	12,0	12,6	11,1	13,5	15,9	12,1	15,0	17,6

用於操作的整體部分安全係數 γ = 1,4。用於操作的部分安全係數取決於荷載類型,並應來自國家法規。

錨栓間距和邊距

>H 121-322 HAZZE					
錨栓尺寸			10	12	14
類型		HUS4	A, AF, C, H, HF	Н	A, AF, H, HF
最小間距	S _{min}	[mm]	40	50	60
特性間距	S _{cr}	[mm]		3 * h _{ef}	
最小邊距	C _{min}	[mm]	40	50	60
特性邊距	C _{cr}	[mm]		1,5 * h _{ef}	

4.0 參考

4.1 參考標準

4.1.1 ASTM 材料標準

標準	標題
A36	結構鋼鐵標準規範
A193	高溫用合金鋼和不銹鋼螺栓材料的標準規範
A307	碳鋼螺栓和螺桿的標準規範,
	60,000 psi 抗拉強度
A370	鋼製品機械測試的標準試驗方法和定義
A563	碳鋼和合金鋼螺帽的標準規範
A615	鋼筋混凝土用竹節和普通碳鋼棒的標準規範
A653	熱浸式鍍鋅(鍍鋅)或鍍鋅鐵合金(鍍鋅)鋼板
	的標準規範
B117	操作鹽霧(霧)設備的標準方法
B695	鋼鐵機械沉積鍍鋅塗層規範
C31	現場製作及固化混凝土試樣的標準方法
C33	混凝土骨料的標準規範
C34	結構性黏土承載牆磚的標準規範
C39	圓柱形混凝土試樣抗壓強度的標準測試方法
C42	獲取及測試混凝土鑽孔和鋸切樑的標準測試方法
C62	建築用磚的標準規範(由黏土或頁岩製成的實心
	磚石單元)
C90	承重混凝土磚石單元的標準規範
C150	

標準	標題
C270	磚石單元砂漿的標準規範
C330	結構混凝土輕質骨料的標準規範
C332	隔熱混凝土輕質骨料的標準規範
C652	空心磚的標準規範(由黏土或頁岩製成的實心 磚石單元)
C881	混凝土環氧樹脂基板黏結系統的標準規範
C882	以斜剪法測試與混凝土搭配使用之環氧樹脂系統 黏結強度的標準試驗方法
C942	實驗室預置骨料混凝土灌漿抗壓強度的標準試驗 方法
D638	塑膠拉伸性質的標準試驗方法
D648	在邊緣位置彎曲荷載下的塑膠撓曲溫度的標準試驗方法
D695	剛性塑膠抗壓性質的標準試驗方法
E8	金屬材料拉伸試驗的標準試驗方法
E119	建築結構和材料防火試驗的標準試驗方法
E488	混凝土構件中錨栓強度的標準試驗方法
E1190	安裝在結構構件中的動力驅動緊固件強度的標準 試驗方法
E1512	試驗黏結錨栓黏結性能的標準試驗方法
F436	硬化鋼鐵墊片的標準規範
F593	不銹鋼螺栓、六角頭螺絲及螺桿的標準規範
F594	不銹鋼螺帽的標準規範
F606	測定外螺紋緊固件、墊片、直接拉力指示器及 鉚釘機械性能的標準測試方法
F844	一般用途未硬化鋼製普通(平)墊片的標準規範
F1554	錨栓 36、55 及 105-ksi 降伏強度的標準規範
F1941-16	機械緊固件上的電鍍塗層
G85	修改後鹽霧試驗的標準方法

4.1.2 ASTM 電鍍標準

標準	標題
A153	鋼鐵鍍鋅層(熱浸)的標準規範
B633	鋼鐵上電鍍鋅塗層的標準規範
B695	鋼鐵上機械鍍鋅塗層的標準規範

4.2 技術參考文件

4.2.1 公制轉換和等值單位

經 1988 年綜合貿易與競爭力法修訂之 1975 年公制轉換法將國際 (SI) 公制確定為美國首選的測量系統。

許多產品目前皆以國際單位製造及供應

或硬公制尺寸,例如直徑為 10 mm、12 mm、26 mm 等的錨 栓螺栓。在提供或使用英时-英磅系統的情況下,有時候可使 用軟公制轉換。

選擇用於安裝機械錨栓的鑽頭時並非如此,這裡必須使用指定 英制或公制直徑的鑽頭。如需錨栓螺栓的軟轉換直徑,請參閱 表 1。如需緊固產品常用的標準公制轉換係數,請參閱表 2 和 表 3。

表 1 – 直徑

• • • • • • • • • • • • • • • • • • • •		
英吋	硬公制轉換 (mm)	軟公制轉換 (mm)
1/4	6.35	6
5/16	7.94	8
3/8	9.52	10
1/2	12.70	12
5/8	15.88	16
3/4	19.05	20
1	25.40	25
1-1/4	31.75	32

表 2 — 英制單位至國際單位

轉換單位	目標單位	乘數
長度	-	•
英吋 (in.)	mm (mm)	25.4000
英尺 (ft)	公尺 (m)	0.3048
面積	·	•
平方时 (in²)	平方mm (mm²)	645.1600
平方时 (in²)	平方公分 (cm ²)	6.4516
平方尺 (ft²)	平方公尺 (m ²)	0.0929
體積	·	
立方时 (in³)	立方公分 (cm ³)	16.3871
平方尺 (ft³)	立方公尺 m ³)	0.0283
gallon (US gal)	公升 (L)	3.7854
力量	·	
磅力 (lbf)	牛頓 (N)	4.4482
磅力 (lbf)	KN頓 (kN)	0.0044
壓力		
磅/平方吋 (psi)	牛頓/平方mm (N/mm²)	0.0069
磅/平方吋 (psi)	兆帕 (MPa)	0.0069
千磅/平方吋 (ksi)	兆帕 (MPa)	6.8946
磅/平方尺 (psf)	牛頓/平方公尺 (N/m²)	47.8801
扭矩或彎矩		
英尺磅 (ft-lb)	牛頓米 (N/m)	1.3558
英吋磅 (in-lb)	牛頓米 (N/m)	0.1130
隔板剪力		
磅/英尺 (plf)	牛頓/公尺 (N/m)	14.5939

表 3 — 國際單位至英制單位

轉換單位	目標單位	乘數
長度		
mm (mm)	英吋 (in.)	0.0394
公尺 (m)	英尺 (ft)	3.2808
面積		
平方mm (mm²)	平方吋 (in²)	0.0016
平方公分 (cm²)	平方吋 (in²)	0.1550
平方公尺 (m²)	平方尺 (ft²)	10.7639
體積		
立方公分 (cm³)	立方时 (in³)	0.0610
立方公尺 (m³)	立方尺 (ft³)	35.3147
公升 (L)	gallon (US gal)	0.2642
力量		
牛頓 (N)	磅力 (lbf)	0.2248
KN頓 (kN)	磅力 (lbf)	224.8089
壓力		
牛頓/平方mm (N/mm²)	磅/平方吋 (psi)	145.0400
兆帕 (MPa)	磅/平方吋 (psi)	145.0400
兆帕 (MPa)	千磅/平方吋 (ksi)	0.1450
牛頓/平方公尺 (N/m²)	磅/平方尺 (psf)	0.0209
扭矩或彎矩		
牛頓米 (N/m)	英尺磅 (ft-lb)	0.7376
牛頓米 (N/m)	英吋磅 (in-lb)	8.8496
膜片剪力		
牛頓/公尺 (N/m)	磅/英尺 (plf)	0.0685

4.2.2 材料的機械性質

表 4 — 碳鋼的機械性質

	標準尺寸	降化	犬強度	極限研	皮壞強度
等級名稱	英吋	ksi	(MPa)	ksi	(MPa)
ASTM A36	全部	36	(248)	58	(400)
ASTM A193, B7	1/4 到 2-1/2	105	(724)	125	(862)
AISI 1038 (As Rec'd)	1/4 到 1-1/4	41	(282)	75	(517)
AISI 11L41	5/8 以上到 1	75	(517)	90	(620)
AISI 1110 M (As Rec'd)	1/4 到 5/8	44	(303)	53	(365)
AISI 12L14	5/8 到 1-1/2	60	(414)	78	(538)
AISI 1010 (As Rec'd)	1/4 到 3/4	44	(303)	53	(365)
ASTM A307	1/4 到 4	_	_	60	(414)
ASTM A325	1/2 到 1	92	(634)	120	(827)
	1 以上到 1-1/2	81	(558)	105	(724)
ASTM A449	1/4 到 1	92	(634)	120	(827)
	1 以上到 1-1/2	81	(558)	105	(724)
ASTM A510	3/8 到 3/4	70	(480)	87	(600)
SAE Grade 2	1/4 到 3/4	57	(393)	74	(510)
	3/4 以上到 1-1/2	36	(248)	60	(414)
SAE Grade 5	1/4 到 1	92	(634)	120	(827)
	1 以上到 1-1/2	81	(558)	105	(724)
SAE Grade 8	1/4 到 1-1/2	130	(896)	150	(1034)
ISO 898-1 Class 5.8	全部	58	(400)	72.5	(500)
ISO 898-1 Class 8.8	全部	92.8	(640)	116	(800)

表 5 — 不鏽鋼的機械性質

	標準尺寸	降伏強度		極限破壞強度	
等級 ASTM/AISI	英吋	ksi	(MPa)	ksi	(MPa)
F593 / 304 / 316	1/4 到 5/8	65	(448)	100	(689)
	3/4 到 1-1/2	45	(310)	85	(586)
A193, B8 / 304 / 316	1/4 到 1-1/2	30	(205)	75	(515)
A276 / 304	1/4 到 9/16	76	(524)	90	(620)
	大於 9/16	64	(441)	75	(524)
A276 / 316	1/4 到 9/16	76	(524)	90	(620)
	大於 9/16	64	(441)	75	(524)
A493 / 304	全部	60	(414)	90	(627)
A582 / 303	全部	60	(414)	100	(689)
DIN 267 Part 11, A4-70	全部	65.3	(450)	101.5	(700)

4.2.3 螺栓螺旋資料

表 6 — UNC 粗螺紋系統的基本尺寸 — ANSI B1.1-1982

	基本直徑				面積			
標準尺寸	主要 英吋 (D)	次要 英吋	每英吋螺紋 (n)	標準 in ²	次要 ¹ in²	拉力應力 ² in ²		
No. 10	0.1900	0.1449	24	0.0284	0.0145	0.0175		
No. 12	0.2160	0.1709	24	0.0366	0.0206	0.0242		
1/4	0.2500	0.1959	20	0.0491	0.0269	0.0318		
5/16	0.3125	0.2524	18	0.0767	0.0454	0.0524		
3/8	0.3750	0.3073	16	0.1104	0.0678	0.0775		
7/16	0.4375	0.3602	14	0.1503	0.0933	0.1063		
1/2	0.5000	0.4167	13	0.1963	0.1257	0.1419		
9/16	0.5625	0.4723	12	0.2485	0.1620	0.1819		
5/8	0.6250	0.5266	11	0.3068	0.2017	0.2260		
3/4	0.7500	0.6417	10	0.4418	0.3019	0.3345		
7/8	0.8750	0.7547	9	0.6013	0.4192	0.4617		
1	1.0000	0.8647	8	0.7854	0.5509	0.6057		
1-1/8	1.1250	0.9704	7	0.9940	0.6929	0.7633		
1-1/4	1.2500	1.0954	7	1.2272	0.8896	0.9691		

圖 1 - 螺絲螺紋的基本外形

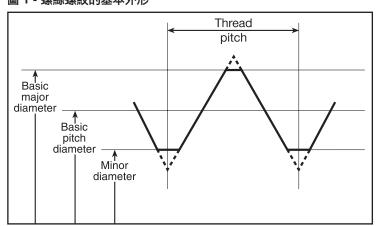


表 7 — M 形公制螺紋系統的基本尺寸 – ANSI B1.13M-1979

	基本直徑				域
標準尺寸	大 mm (D)	/J\ mm	螺紋節距 mm (P)	標準 mm ²	拉力應力 ¹ mm ²
M8	8	6.62	1.25	50.3	36.6
M10	10	8.34	1.50	78.5	58.0
M12	12	10.07	1.75	113.1	84.3
M16	16	13.80	2.00	201.1	157.0
M20	20	17.25	2.50	314.2	245.0
M24	24	20.70	3.00	452.4	353.0
4 ++	0.0000 D)2				

¹ 拉力應力區 = 0.7854 (D - 0.9382 P)²

¹ 小型面積 = 0.7854 (D - 1.3/n)² 2 拉力應力區 = 0.7854 (D - 0.9743/n)²

4.2.4 混凝土鋼筋資料

表 8 - 混凝土鋼筋用途之竹節鋼筋的 ASTM 基本尺寸,英制單位

		標準尺寸 ²		
	標準重量	直徑	面積	周長
鋼筋名稱號碼1	lb/ft	in.	in ²	in.
3	0.376	0.375	0.11	1.178
4	0.668	0.500	0.20	1.571
5	1.043	0.625	0.31	1.963
6	1.502	0.750	0.44	2.356
7	2.044	0.875	0.60	2.749
8	2.670	1.000	0.79	3.142
9	3.400	1.128	1.00	3.544
10	4.303	1.270	1.27	3.990
11	5.313	1.410	1.56	4.430
14	7.65	1.693	2.25	5.32
18	13.60	2.257	4.00	7.09

表 9 — ASTM 混凝土鋼筋用竹節鋼筋的基本尺寸,SI 單位

		標準尺寸 ²			
鋼筋名稱號碼¹	標準重量 lb/ft	直徑 mm	面積 mm²	周長 mm	
10	0.560	9.5	71	29.9	
13	0.994	12.7	129	39.9	
16	1.552	15.9	199	49.9	
19	2.235	19.1	284	59.8	
22	3.042	22.2	387	69.8	
25	3.973	25.4	510	79.8	
29	5.060	28.7	645	90.0	
32	6.404	32.3	819	101.3	
36	7.907	35.8	1006	112.5	
43	11.38	43.0	1452	135.1	
57	20.24	57.3	2581	180.0	

銷售條款與細則(台灣)

台灣:

https://www.hilti.com.tw/content/hilti/A1/TW/zh/various/footer-links/Terms%20and%20Conditions.html

¹ 鋼筋名稱號碼係以標準直徑中包含的八分之一英时數為基礎。 2 變形鋼筋的標準尺寸為近似值,並顯示為等同於每英尺重量與變形鋼筋相同的普通圓鋼筋。

¹ 鋼筋名稱號碼近似於鋼筋標準直徑的mm數。 2 變形鋼筋的標準尺寸為近似值,並顯示為等同於每公尺質量與變形鋼筋相同的普通圓鋼筋。

台灣分公司:

Hilti Taiwan Company Ltd. 新北市板橋區新站路16號24樓 客戶服務:0800-221-036

www.hilti.com.tw

喜利得是提供公平機會的僱主。 喜利得是 Hilti, Corp. 的註冊商標 ©版權所有 2022 by Hilti, Inc.

本文獻包含的資料是截至出版日前的最新資料。可能根據日後的試驗進行更新及更動。如須驗證資料是否為最新狀態,請致電 0800-221-036 與喜利得客戶服務。本文獻包含的所有發佈荷載值均代表喜利得或試驗機構的試驗結果。已使用本地基材。由於材料變化性,須進行現場試驗以確定任何特定工地的實際效果。本出版品使用紅線表示雷射光束於台灣印刷出版。